Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import sys
|
4 |
+
from typing import Sequence, Mapping, Any, Union
|
5 |
+
import spaces
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from comfy import model_management
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
# --- Helper Functions from original script ---
|
13 |
+
|
14 |
+
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
15 |
+
try:
|
16 |
+
return obj[index]
|
17 |
+
except KeyError:
|
18 |
+
return obj["result"][index]
|
19 |
+
|
20 |
+
def find_path(name: str, path: str = None) -> str:
|
21 |
+
if path is None:
|
22 |
+
path = os.getcwd()
|
23 |
+
if name in os.listdir(path):
|
24 |
+
path_name = os.path.join(path, name)
|
25 |
+
print(f"{name} found: {path_name}")
|
26 |
+
return path_name
|
27 |
+
parent_directory = os.path.dirname(path)
|
28 |
+
if parent_directory == path:
|
29 |
+
return None
|
30 |
+
return find_path(name, parent_directory)
|
31 |
+
|
32 |
+
def add_comfyui_directory_to_sys_path() -> None:
|
33 |
+
comfyui_path = find_path("ComfyUI")
|
34 |
+
if comfyui_path is not None and os.path.isdir(comfyui_path):
|
35 |
+
sys.path.append(comfyui_path)
|
36 |
+
print(f"'{comfyui_path}' added to sys.path")
|
37 |
+
|
38 |
+
def add_extra_model_paths() -> None:
|
39 |
+
try:
|
40 |
+
from main import load_extra_path_config
|
41 |
+
except ImportError:
|
42 |
+
from utils.extra_config import load_extra_path_config
|
43 |
+
extra_model_paths = find_path("extra_model_paths.yaml")
|
44 |
+
if extra_model_paths is not None:
|
45 |
+
load_extra_path_config(extra_model_paths)
|
46 |
+
else:
|
47 |
+
print("Could not find the extra_model_paths config file.")
|
48 |
+
|
49 |
+
def import_custom_nodes() -> None:
|
50 |
+
import asyncio
|
51 |
+
import execution
|
52 |
+
from nodes import init_extra_nodes
|
53 |
+
import server
|
54 |
+
loop = asyncio.new_event_loop()
|
55 |
+
asyncio.set_event_loop(loop)
|
56 |
+
server_instance = server.PromptServer(loop)
|
57 |
+
execution.PromptQueue(server_instance)
|
58 |
+
init_extra_nodes()
|
59 |
+
|
60 |
+
# --- Setup and Model Downloads ---
|
61 |
+
|
62 |
+
add_comfyui_directory_to_sys_path()
|
63 |
+
add_extra_model_paths()
|
64 |
+
import_custom_nodes()
|
65 |
+
from nodes import NODE_CLASS_MAPPINGS
|
66 |
+
|
67 |
+
print("Downlading models from Hugging Face Hub...")
|
68 |
+
# Text Encoder
|
69 |
+
hf_hub_download(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors", local_dir="models/text_encoders")
|
70 |
+
# UNETs
|
71 |
+
hf_hub_download(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors", local_dir="models/unet")
|
72 |
+
hf_hub_download(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors", local_dir="models/unet")
|
73 |
+
# VAE
|
74 |
+
hf_hub_download(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/vae/wan_2.1_vae.safetensors", local_dir="models/vae")
|
75 |
+
# CLIP Vision
|
76 |
+
hf_hub_download(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/clip_vision/clip_vision_h.safetensors", local_dir="models/clip_vision")
|
77 |
+
# LoRAs
|
78 |
+
hf_hub_download(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors", local_dir="models/loras")
|
79 |
+
hf_hub_download(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", local_dir="models/loras")
|
80 |
+
print("Downloads complete.")
|
81 |
+
|
82 |
+
# --- ZeroGPU: Pre-load models and instantiate nodes globally ---
|
83 |
+
|
84 |
+
# Instantiate Nodes
|
85 |
+
cliploader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
|
86 |
+
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
87 |
+
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
88 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
89 |
+
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
90 |
+
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
91 |
+
clipvisionencode = NODE_CLASS_MAPPINGS["CLIPVisionEncode"]()
|
92 |
+
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
93 |
+
modelsamplingsd3 = NODE_CLASS_MAPPINGS["ModelSamplingSD3"]()
|
94 |
+
pathchsageattentionkj = NODE_CLASS_MAPPINGS["PathchSageAttentionKJ"]()
|
95 |
+
wanfirstlastframetovideo = NODE_CLASS_MAPPINGS["WanFirstLastFrameToVideo"]()
|
96 |
+
ksampleradvanced = NODE_CLASS_MAPPINGS["KSamplerAdvanced"]()
|
97 |
+
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
98 |
+
createvideo = NODE_CLASS_MAPPINGS["CreateVideo"]()
|
99 |
+
savevideo = NODE_CLASS_MAPPINGS["SaveVideo"]()
|
100 |
+
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() # For dynamic resizing
|
101 |
+
|
102 |
+
# Load Models
|
103 |
+
cliploader_38 = cliploader.load_clip(clip_name="umt5_xxl_fp8_e4m3fn_scaled.safetensors", type="wan", device="cpu")
|
104 |
+
unetloader_37_low_noise = unetloader.load_unet(unet_name="wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors", weight_dtype="default")
|
105 |
+
unetloader_91_high_noise = unetloader.load_unet(unet_name="wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors", weight_dtype="default")
|
106 |
+
vaeloader_39 = vaeloader.load_vae(vae_name="wan_2.1_vae.safetensors")
|
107 |
+
clipvisionloader_49 = clipvisionloader.load_clip(clip_name="clip_vision_h.safetensors")
|
108 |
+
|
109 |
+
# Apply LoRAs and Patches
|
110 |
+
loraloadermodelonly_94_high = loraloadermodelonly.load_lora_model_only(lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors", strength_model=0.8, model=get_value_at_index(unetloader_91_high_noise, 0))
|
111 |
+
loraloadermodelonly_95_low = loraloadermodelonly.load_lora_model_only(lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", strength_model=0.8, model=get_value_at_index(unetloader_37_low_noise, 0))
|
112 |
+
modelsamplingsd3_93_low = modelsamplingsd3.patch(shift=8, model=get_value_at_index(loraloadermodelonly_95_low, 0))
|
113 |
+
pathchsageattentionkj_98_low = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(modelsamplingsd3_93_low, 0))
|
114 |
+
modelsamplingsd3_79_high = modelsamplingsd3.patch(shift=8, model=get_value_at_index(loraloadermodelonly_94_high, 0))
|
115 |
+
pathchsageattentionkj_96_high = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(modelsamplingsd3_79_high, 0))
|
116 |
+
|
117 |
+
# Pre-load models to GPU
|
118 |
+
model_loaders = [cliploader_38, unetloader_37_low_noise, unetloader_91_high_noise, vaeloader_39, clipvisionloader_49, loraloadermodelonly_94_high, loraloadermodelonly_95_low]
|
119 |
+
valid_models = [getattr(loader[0], 'patcher', loader[0]) for loader in model_loaders if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)]
|
120 |
+
model_management.load_models_gpu(valid_models)
|
121 |
+
|
122 |
+
# --- Custom Logic for this App ---
|
123 |
+
|
124 |
+
def calculate_dimensions(image_path):
|
125 |
+
with Image.open(image_path) as img:
|
126 |
+
width, height = img.size
|
127 |
+
|
128 |
+
if width == height:
|
129 |
+
return 480, 480
|
130 |
+
|
131 |
+
if width > height:
|
132 |
+
new_width = 832
|
133 |
+
new_height = int(height * (832 / width))
|
134 |
+
else:
|
135 |
+
new_height = 832
|
136 |
+
new_width = int(width * (832 / height))
|
137 |
+
|
138 |
+
# Ensure dimensions are multiples of 16
|
139 |
+
new_width = (new_width // 16) * 16
|
140 |
+
new_height = (new_height // 16) * 16
|
141 |
+
|
142 |
+
return new_width, new_height
|
143 |
+
|
144 |
+
# --- Main Generation Function ---
|
145 |
+
|
146 |
+
@spaces.GPU(duration=120)
|
147 |
+
def generate_video(prompt, first_image_path, last_image_path):
|
148 |
+
# This function now only handles per-request logic
|
149 |
+
with torch.inference_mode():
|
150 |
+
# Calculate target dimensions based on the first image
|
151 |
+
target_width, target_height = calculate_dimensions(first_image_path)
|
152 |
+
|
153 |
+
# 1. Load and resize images
|
154 |
+
# Since LoadImage returns a tensor, we pass it to the resize node
|
155 |
+
loaded_first_image = loadimage.load_image(image=first_image_path)
|
156 |
+
resized_first_image = imageresize.execute(
|
157 |
+
width=target_width, height=target_height, interpolation="bicubic",
|
158 |
+
method="stretch", condition="always", multiple_of=1,
|
159 |
+
image=get_value_at_index(loaded_first_image, 0)
|
160 |
+
)
|
161 |
+
|
162 |
+
loaded_last_image = loadimage.load_image(image=last_image_path)
|
163 |
+
resized_last_image = imageresize.execute(
|
164 |
+
width=target_width, height=target_height, interpolation="bicubic",
|
165 |
+
method="stretch", condition="always", multiple_of=1,
|
166 |
+
image=get_value_at_index(loaded_last_image, 0)
|
167 |
+
)
|
168 |
+
|
169 |
+
# 2. Encode text and images
|
170 |
+
cliptextencode_6 = cliptextencode.encode(text=prompt, clip=get_value_at_index(cliploader_38, 0))
|
171 |
+
cliptextencode_7_negative = cliptextencode.encode(
|
172 |
+
text="low quality, worst quality, jpeg artifacts, ugly, deformed, blurry",
|
173 |
+
clip=get_value_at_index(cliploader_38, 0),
|
174 |
+
)
|
175 |
+
clipvisionencode_51 = clipvisionencode.encode(crop="none", clip_vision=get_value_at_index(clipvisionloader_49, 0), image=get_value_at_index(resized_first_image, 0))
|
176 |
+
clipvisionencode_87 = clipvisionencode.encode(crop="none", clip_vision=get_value_at_index(clipvisionloader_49, 0), image=get_value_at_index(resized_last_image, 0))
|
177 |
+
|
178 |
+
# 3. Prepare latents for video generation
|
179 |
+
wanfirstlastframetovideo_83 = wanfirstlastframetovideo.EXECUTE_NORMALIZED(
|
180 |
+
width=target_width, height=target_height, length=33, batch_size=1,
|
181 |
+
positive=get_value_at_index(cliptextencode_6, 0),
|
182 |
+
negative=get_value_at_index(cliptextencode_7_negative, 0),
|
183 |
+
vae=get_value_at_index(vaeloader_39, 0),
|
184 |
+
clip_vision_start_image=get_value_at_index(clipvisionencode_51, 0),
|
185 |
+
clip_vision_end_image=get_value_at_index(clipvisionencode_87, 0),
|
186 |
+
start_image=get_value_at_index(resized_first_image, 0),
|
187 |
+
end_image=get_value_at_index(resized_last_image, 0),
|
188 |
+
)
|
189 |
+
|
190 |
+
# 4. KSampler pipeline
|
191 |
+
ksampleradvanced_101 = ksampleradvanced.sample(
|
192 |
+
add_noise="enable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
193 |
+
sampler_name="euler", scheduler="simple", start_at_step=0, end_at_step=4,
|
194 |
+
return_with_leftover_noise="enable", model=get_value_at_index(pathchsageattentionkj_96_high, 0),
|
195 |
+
positive=get_value_at_index(wanfirstlastframetovideo_83, 0),
|
196 |
+
negative=get_value_at_index(wanfirstlastframetovideo_83, 1),
|
197 |
+
latent_image=get_value_at_index(wanfirstlastframetovideo_83, 2),
|
198 |
+
)
|
199 |
+
ksampleradvanced_102 = ksampleradvanced.sample(
|
200 |
+
add_noise="disable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
201 |
+
sampler_name="euler", scheduler="simple", start_at_step=4, end_at_step=10000,
|
202 |
+
return_with_leftover_noise="disable", model=get_value_at_index(pathchsageattentionkj_98_low, 0),
|
203 |
+
positive=get_value_at_index(wanfirstlastframetovideo_83, 0),
|
204 |
+
negative=get_value_at_index(wanfirstlastframetovideo_83, 1),
|
205 |
+
latent_image=get_value_at_index(ksampleradvanced_101, 0),
|
206 |
+
)
|
207 |
+
|
208 |
+
# 5. Decode and save video
|
209 |
+
vaedecode_8 = vaedecode.decode(samples=get_value_at_index(ksampleradvanced_102, 0), vae=get_value_at_index(vaeloader_39, 0))
|
210 |
+
createvideo_104 = createvideo.create_video(fps=16, images=get_value_at_index(vaedecode_8, 0))
|
211 |
+
savevideo_103 = savevideo.save_video(filename_prefix="ComfyUI_Video", format="mp4", codec="libx264", video=get_value_at_index(createvideo_104, 0))
|
212 |
+
|
213 |
+
# Return the path to the saved video
|
214 |
+
video_filename = savevideo_103['ui']['videos'][0]['filename']
|
215 |
+
return f"output/{video_filename}"
|
216 |
+
|
217 |
+
# --- Gradio Interface ---
|
218 |
+
|
219 |
+
with gr.Blocks() as app:
|
220 |
+
gr.Markdown("# Wan 2.2 First/Last Frame to Video")
|
221 |
+
gr.Markdown("Provide a starting image, an ending image, and a text prompt to generate a video transitioning between them.")
|
222 |
+
|
223 |
+
with gr.Row():
|
224 |
+
with gr.Column(scale=1):
|
225 |
+
prompt_input = gr.Textbox(label="Prompt", value="the guy turns")
|
226 |
+
first_image = gr.Image(label="First Frame", type="filepath")
|
227 |
+
last_image = gr.Image(label="Last Frame", type="filepath")
|
228 |
+
generate_btn = gr.Button("Generate Video")
|
229 |
+
with gr.Column(scale=2):
|
230 |
+
output_video = gr.Video(label="Generated Video")
|
231 |
+
|
232 |
+
generate_btn.click(
|
233 |
+
fn=generate_video,
|
234 |
+
inputs=[prompt_input, first_image, last_image],
|
235 |
+
outputs=[output_video]
|
236 |
+
)
|
237 |
+
|
238 |
+
gr.Examples(
|
239 |
+
examples=[
|
240 |
+
["a beautiful woman, cinematic", "examples/start.png", "examples/end.png"]
|
241 |
+
],
|
242 |
+
inputs=[prompt_input, first_image, last_image]
|
243 |
+
)
|
244 |
+
|
245 |
+
if __name__ == "__main__":
|
246 |
+
# Create example images if they don't exist
|
247 |
+
if not os.path.exists("examples"):
|
248 |
+
os.makedirs("examples")
|
249 |
+
if not os.path.exists("examples/start.png"):
|
250 |
+
Image.new('RGB', (512, 512), color = 'red').save('examples/start.png')
|
251 |
+
if not os.path.exists("examples/end.png"):
|
252 |
+
Image.new('RGB', (512, 512), color = 'blue').save('examples/end.png')
|
253 |
+
|
254 |
+
app.launch()
|