olive-detector / app.py
mmek's picture
Initial commit
80bea16
raw
history blame
1.15 kB
import gradio as gr
import PIL.Image as Image
from ultralytics import YOLO
model = YOLO("best.pt")
def predict_image(img, conf_threshold, iou_threshold):
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
],
outputs=gr.Image(type="pil", label="Result"),
title="Ultralytics Gradio",
description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.",
examples=[
"examples/healthy.jpg",
"examples/aculus_2.jpg",
"examples/aculus_1.jpg",
"examples/peacock_2.jpg",
"examples/peacock_3.jpg",
],
)
if __name__ == "__main__":
iface.launch()