mmek commited on
Commit
80bea16
·
1 Parent(s): 267f1d8

Initial commit

Browse files
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import PIL.Image as Image
3
+
4
+ from ultralytics import YOLO
5
+
6
+ model = YOLO("best.pt")
7
+
8
+
9
+ def predict_image(img, conf_threshold, iou_threshold):
10
+ results = model.predict(
11
+ source=img,
12
+ conf=conf_threshold,
13
+ iou=iou_threshold,
14
+ show_labels=True,
15
+ show_conf=True,
16
+ imgsz=640,
17
+ )
18
+
19
+ for r in results:
20
+ im_array = r.plot()
21
+ im = Image.fromarray(im_array[..., ::-1])
22
+
23
+ return im
24
+
25
+
26
+ iface = gr.Interface(
27
+ fn=predict_image,
28
+ inputs=[
29
+ gr.Image(type="pil", label="Upload Image"),
30
+ gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
31
+ gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
32
+ ],
33
+ outputs=gr.Image(type="pil", label="Result"),
34
+ title="Ultralytics Gradio",
35
+ description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.",
36
+ examples=[
37
+ "examples/healthy.jpg",
38
+ "examples/aculus_2.jpg",
39
+ "examples/aculus_1.jpg",
40
+ "examples/peacock_2.jpg",
41
+ "examples/peacock_3.jpg",
42
+ ],
43
+ )
44
+
45
+ if __name__ == "__main__":
46
+ iface.launch()
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a088db8573378e1149dab4bac8c7ab4bb1bcc174e18a30b1ec477bf0e1e7f41
3
+ size 22491555
examples/aculus_1.jpg ADDED
examples/aculus_2.jpg ADDED
examples/healthy.jpg ADDED
examples/peacock_2.jpg ADDED
examples/peacock_3.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ gradio
2
+ ultralytics