File size: 805 Bytes
5454af5
6d8a5b6
704ef61
 
e0b488c
704ef61
4ae8bae
75e4b7c
15d18c4
3c97a0a
15d18c4
79be51e
704ef61
 
75e4b7c
15d18c4
75e4b7c
6d8a5b6
313c320
15d18c4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import streamlit as st
from transformers import pipeline
from PIL import Image
import easyocr
# ghjklkjhgfghj
pipe = pipeline("text2text-generation", model="google/flan-t5-base")

st.title("Text Classification Model")
uploaded_file = st.file_uploader("Upload an image:")

if uploaded_file is not None:
    image = Image.open(uploaded_file)
    ocr_reader = easyocr.Reader(['en'])
    ocr_results = ocr_reader.readtext(image)
    extracted_text = " ".join([res[1] for res in ocr_results])
    st.markdown("**Extracted text:**")
    st.markdown(extracted_text)
    explanation = pipe(extracted_text, max_length=100, do_sample=True)[0]["generated_text"]
    st.markdown("**Explanation:**")
    st.markdown(explanation)

else:
    st.markdown("Please upload an image to extract text and get an explanation.")