Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import io
|
4 |
-
import
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor, AutoModelForSeq2SeqLM
|
6 |
-
from easyocr import Reader
|
7 |
|
8 |
-
# Load the OCR model and text
|
9 |
ocr_reader = Reader(['en'])
|
10 |
-
text_generator = AutoModelForCausalLM.from_pretrained("gpt2")
|
11 |
-
text_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
12 |
|
13 |
-
# Load the
|
14 |
-
|
15 |
-
|
16 |
|
17 |
# Define a function to extract text from an image using OCR
|
18 |
def extract_text(image):
|
19 |
return ocr_reader.readtext(image)
|
20 |
|
21 |
# Define a function to explain the extracted text using text generation
|
22 |
-
def explain_text(text,
|
23 |
# Extracted text
|
24 |
extracted_text = " ".join([res[1] for res in text])
|
25 |
|
26 |
-
# Generate an
|
27 |
-
|
28 |
-
input_ids =
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
generated_caption = processor.decode(caption[0], skip_special_tokens=True)
|
33 |
-
return generated_caption
|
34 |
|
35 |
# Create a Streamlit layout
|
36 |
st.title("Text Extraction and Explanation")
|
@@ -42,12 +36,12 @@ uploaded_file = st.file_uploader("Upload an image:")
|
|
42 |
if uploaded_file is not None:
|
43 |
image = Image.open(uploaded_file)
|
44 |
ocr_results = extract_text(image)
|
45 |
-
explanation = explain_text(ocr_results,
|
46 |
|
47 |
st.markdown("**Extracted text:**")
|
48 |
st.markdown(" ".join([res[1] for res in ocr_results]))
|
49 |
|
50 |
-
st.markdown("**Explanation
|
51 |
st.markdown(explanation)
|
52 |
|
53 |
else:
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import io
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
5 |
|
6 |
+
# Load the OCR model and text explanation model
|
7 |
ocr_reader = Reader(['en'])
|
|
|
|
|
8 |
|
9 |
+
# Load the text explanation model
|
10 |
+
text_generator = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
|
11 |
+
text_tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
|
12 |
|
13 |
# Define a function to extract text from an image using OCR
|
14 |
def extract_text(image):
|
15 |
return ocr_reader.readtext(image)
|
16 |
|
17 |
# Define a function to explain the extracted text using text generation
|
18 |
+
def explain_text(text, text_generator, text_tokenizer):
|
19 |
# Extracted text
|
20 |
extracted_text = " ".join([res[1] for res in text])
|
21 |
|
22 |
+
# Generate an explanation using the text explanation model
|
23 |
+
input_ids = text_tokenizer.encode(extracted_text, return_tensors="pt")
|
24 |
+
explanation_ids = text_generator.generate(input_ids, max_length=100, num_return_sequences=1)
|
25 |
+
explanation = text_tokenizer.decode(explanation_ids[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
return explanation
|
|
|
|
|
28 |
|
29 |
# Create a Streamlit layout
|
30 |
st.title("Text Extraction and Explanation")
|
|
|
36 |
if uploaded_file is not None:
|
37 |
image = Image.open(uploaded_file)
|
38 |
ocr_results = extract_text(image)
|
39 |
+
explanation = explain_text(ocr_results, text_generator, text_tokenizer)
|
40 |
|
41 |
st.markdown("**Extracted text:**")
|
42 |
st.markdown(" ".join([res[1] for res in ocr_results]))
|
43 |
|
44 |
+
st.markdown("**Explanation:**")
|
45 |
st.markdown(explanation)
|
46 |
|
47 |
else:
|