Update retrieval.py
Browse files- retrieval.py +19 -15
retrieval.py
CHANGED
@@ -7,7 +7,7 @@ import chromadb
|
|
7 |
from chromadb.config import Settings
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
|
10 |
-
# Optional: Set your PubMed API key from environment variables
|
11 |
PUBMED_API_KEY = os.environ.get("PUBMED_API_KEY", "<YOUR_NCBI_API_KEY>")
|
12 |
|
13 |
#############################################
|
@@ -15,8 +15,8 @@ PUBMED_API_KEY = os.environ.get("PUBMED_API_KEY", "<YOUR_NCBI_API_KEY>")
|
|
15 |
#############################################
|
16 |
def fetch_pubmed_abstracts(query: str, max_results: int = 5) -> List[str]:
|
17 |
"""
|
18 |
-
|
19 |
-
|
20 |
"""
|
21 |
search_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
22 |
params = {
|
@@ -26,7 +26,7 @@ def fetch_pubmed_abstracts(query: str, max_results: int = 5) -> List[str]:
|
|
26 |
"api_key": PUBMED_API_KEY,
|
27 |
"retmode": "json"
|
28 |
}
|
29 |
-
r = requests.get(search_url, params=params)
|
30 |
r.raise_for_status()
|
31 |
data = r.json()
|
32 |
|
@@ -41,7 +41,7 @@ def fetch_pubmed_abstracts(query: str, max_results: int = 5) -> List[str]:
|
|
41 |
"retmode": "text",
|
42 |
"api_key": PUBMED_API_KEY
|
43 |
}
|
44 |
-
fetch_resp = requests.get(fetch_url, params=fetch_params)
|
45 |
fetch_resp.raise_for_status()
|
46 |
abstract_text = fetch_resp.text.strip()
|
47 |
if abstract_text:
|
@@ -53,7 +53,8 @@ def fetch_pubmed_abstracts(query: str, max_results: int = 5) -> List[str]:
|
|
53 |
#############################################
|
54 |
class EmbedFunction:
|
55 |
"""
|
56 |
-
|
|
|
57 |
"""
|
58 |
def __init__(self, model_name: str):
|
59 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -80,7 +81,7 @@ class EmbedFunction:
|
|
80 |
EMBED_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
81 |
embed_function = EmbedFunction(EMBED_MODEL_NAME)
|
82 |
|
83 |
-
# Use a temporary directory for persistent storage.
|
84 |
temp_dir = tempfile.mkdtemp()
|
85 |
print("Using temporary persist_directory:", temp_dir)
|
86 |
|
@@ -91,24 +92,24 @@ client = chromadb.Client(
|
|
91 |
)
|
92 |
)
|
93 |
|
94 |
-
# Create or
|
95 |
collection = client.get_or_create_collection(
|
96 |
name="ai_medical_knowledge",
|
97 |
embedding_function=embed_function
|
98 |
)
|
99 |
|
100 |
-
# Force initialization
|
101 |
try:
|
102 |
collection.add(documents=["dummy"], ids=["dummy"])
|
103 |
_ = collection.query(query_texts=["dummy"], n_results=1)
|
104 |
-
# Optionally, remove the dummy document if needed (Chromadb might not support deletion, so you can ignore it)
|
105 |
print("Dummy initialization successful.")
|
106 |
except Exception as init_err:
|
107 |
print("Dummy initialization failed:", init_err)
|
108 |
|
109 |
def index_pubmed_docs(docs: List[str], prefix: str = "doc"):
|
110 |
"""
|
111 |
-
|
|
|
112 |
"""
|
113 |
for i, doc in enumerate(docs):
|
114 |
if doc.strip():
|
@@ -122,7 +123,8 @@ def index_pubmed_docs(docs: List[str], prefix: str = "doc"):
|
|
122 |
|
123 |
def query_similar_docs(query: str, top_k: int = 3) -> List[str]:
|
124 |
"""
|
125 |
-
|
|
|
126 |
"""
|
127 |
results = collection.query(query_texts=[query], n_results=top_k)
|
128 |
return results["documents"][0] if results and results["documents"] else []
|
@@ -132,10 +134,12 @@ def query_similar_docs(query: str, top_k: int = 3) -> List[str]:
|
|
132 |
#############################################
|
133 |
def get_relevant_pubmed_docs(user_query: str) -> List[str]:
|
134 |
"""
|
135 |
-
|
136 |
1. Fetch PubMed abstracts for the query.
|
137 |
-
2. Index
|
138 |
-
3. Retrieve the
|
|
|
|
|
139 |
"""
|
140 |
new_abstracts = fetch_pubmed_abstracts(user_query, max_results=5)
|
141 |
if not new_abstracts:
|
|
|
7 |
from chromadb.config import Settings
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
|
10 |
+
# Optional: Set your PubMed API key from environment variables.
|
11 |
PUBMED_API_KEY = os.environ.get("PUBMED_API_KEY", "<YOUR_NCBI_API_KEY>")
|
12 |
|
13 |
#############################################
|
|
|
15 |
#############################################
|
16 |
def fetch_pubmed_abstracts(query: str, max_results: int = 5) -> List[str]:
|
17 |
"""
|
18 |
+
Retrieves PubMed abstracts for a given clinical query using NCBI's E-utilities.
|
19 |
+
Designed to quickly fetch up to 'max_results' abstracts.
|
20 |
"""
|
21 |
search_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
22 |
params = {
|
|
|
26 |
"api_key": PUBMED_API_KEY,
|
27 |
"retmode": "json"
|
28 |
}
|
29 |
+
r = requests.get(search_url, params=params, timeout=10)
|
30 |
r.raise_for_status()
|
31 |
data = r.json()
|
32 |
|
|
|
41 |
"retmode": "text",
|
42 |
"api_key": PUBMED_API_KEY
|
43 |
}
|
44 |
+
fetch_resp = requests.get(fetch_url, params=fetch_params, timeout=10)
|
45 |
fetch_resp.raise_for_status()
|
46 |
abstract_text = fetch_resp.text.strip()
|
47 |
if abstract_text:
|
|
|
53 |
#############################################
|
54 |
class EmbedFunction:
|
55 |
"""
|
56 |
+
Uses a Hugging Face embedding model to generate embeddings for a list of strings.
|
57 |
+
This function is crucial for indexing abstracts for similarity search.
|
58 |
"""
|
59 |
def __init__(self, model_name: str):
|
60 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
81 |
EMBED_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
82 |
embed_function = EmbedFunction(EMBED_MODEL_NAME)
|
83 |
|
84 |
+
# Use a temporary directory for persistent storage to ensure a fresh initialization.
|
85 |
temp_dir = tempfile.mkdtemp()
|
86 |
print("Using temporary persist_directory:", temp_dir)
|
87 |
|
|
|
92 |
)
|
93 |
)
|
94 |
|
95 |
+
# Create or retrieve the collection for medical abstracts.
|
96 |
collection = client.get_or_create_collection(
|
97 |
name="ai_medical_knowledge",
|
98 |
embedding_function=embed_function
|
99 |
)
|
100 |
|
101 |
+
# Optional: Force initialization with a dummy document to ensure the schema is set up.
|
102 |
try:
|
103 |
collection.add(documents=["dummy"], ids=["dummy"])
|
104 |
_ = collection.query(query_texts=["dummy"], n_results=1)
|
|
|
105 |
print("Dummy initialization successful.")
|
106 |
except Exception as init_err:
|
107 |
print("Dummy initialization failed:", init_err)
|
108 |
|
109 |
def index_pubmed_docs(docs: List[str], prefix: str = "doc"):
|
110 |
"""
|
111 |
+
Indexes PubMed abstracts into the Chroma vector store.
|
112 |
+
Each document is assigned a unique ID based on the query prefix.
|
113 |
"""
|
114 |
for i, doc in enumerate(docs):
|
115 |
if doc.strip():
|
|
|
123 |
|
124 |
def query_similar_docs(query: str, top_k: int = 3) -> List[str]:
|
125 |
"""
|
126 |
+
Searches the indexed abstracts for those most similar to the given query.
|
127 |
+
Returns the top 'top_k' documents.
|
128 |
"""
|
129 |
results = collection.query(query_texts=[query], n_results=top_k)
|
130 |
return results["documents"][0] if results and results["documents"] else []
|
|
|
134 |
#############################################
|
135 |
def get_relevant_pubmed_docs(user_query: str) -> List[str]:
|
136 |
"""
|
137 |
+
Complete retrieval pipeline:
|
138 |
1. Fetch PubMed abstracts for the query.
|
139 |
+
2. Index the abstracts into the vector store.
|
140 |
+
3. Retrieve and return the most similar documents.
|
141 |
+
|
142 |
+
Designed for clinicians to quickly access relevant literature.
|
143 |
"""
|
144 |
new_abstracts = fetch_pubmed_abstracts(user_query, max_results=5)
|
145 |
if not new_abstracts:
|