mgbam commited on
Commit
5586859
·
verified ·
1 Parent(s): 99bf340

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -13
app.py CHANGED
@@ -1,14 +1,13 @@
1
  import subprocess
2
  import sys
3
 
4
- # Force reinstall pydantic v1 before anything else loads
5
  subprocess.run([sys.executable, "-m", "pip", "install", "--force-reinstall", "pydantic==1.10.7"])
6
 
7
  import os
8
- # Then proceed with normal imports
9
  os.environ["HF_HUB_TIMEOUT"] = "60"
10
 
11
-
12
  import streamlit as st
13
  import streamlit.components.v1 as components
14
  from backend import process_medical_query, docs_cache
@@ -20,21 +19,14 @@ def main():
20
  "**Using BioGPT-Large-PubMedQA + PubMed + Chroma** for advanced retrieval-augmented generation."
21
  )
22
 
 
23
  user_query = st.text_input("Enter biomedical/medical query", "Malaria and cough treatment")
24
  if st.button("Submit"):
25
  with st.spinner("Generating answer..."):
 
26
  final_answer, sub_questions, initial_answer, critique = process_medical_query(user_query)
27
 
28
- st.subheader("Sub-Question Decomposition")
29
- st.write(sub_questions)
30
-
31
- st.subheader("Initial AI Answer")
32
- st.write(initial_answer)
33
-
34
- st.subheader("Self-Critique")
35
- st.write(critique)
36
-
37
- st.subheader("Refined AI Answer")
38
  st.write(final_answer)
39
 
40
  st.subheader("Knowledge Graph")
 
1
  import subprocess
2
  import sys
3
 
4
+ # Force reinstall pydantic v1 before any other imports to ensure compatibility with Chromadb.
5
  subprocess.run([sys.executable, "-m", "pip", "install", "--force-reinstall", "pydantic==1.10.7"])
6
 
7
  import os
8
+ # Set HF Hub timeout to 60 seconds.
9
  os.environ["HF_HUB_TIMEOUT"] = "60"
10
 
 
11
  import streamlit as st
12
  import streamlit.components.v1 as components
13
  from backend import process_medical_query, docs_cache
 
19
  "**Using BioGPT-Large-PubMedQA + PubMed + Chroma** for advanced retrieval-augmented generation."
20
  )
21
 
22
+ # Clinical query input – designed for clarity and ease-of-use.
23
  user_query = st.text_input("Enter biomedical/medical query", "Malaria and cough treatment")
24
  if st.button("Submit"):
25
  with st.spinner("Generating answer..."):
26
+ # Process the query using the streamlined backend.
27
  final_answer, sub_questions, initial_answer, critique = process_medical_query(user_query)
28
 
29
+ st.subheader("AI Answer")
 
 
 
 
 
 
 
 
 
30
  st.write(final_answer)
31
 
32
  st.subheader("Knowledge Graph")