meeww's picture
Update app.py
dec6f1b
raw
history blame
1.65 kB
import gradio as gr
from image_dataset import ImageDataset
from image_wgan import ImageWgan
import os
from os.path import exists
from PIL import Image
def init():
generated_samples_folder = "."
discriminator_saved_model = "discriminator64.model"
generator_saved_model = "generator64.model"
latent_space = 100
image_wgan = ImageWgan(
image_shape = (4,64,64),
latent_space_dimension=latent_space,
generator_saved_model=generator_saved_model if exists(generator_saved_model) else None,
discriminator_saved_model=discriminator_saved_model if exists(discriminator_saved_model) else None
)
image_wgan.generate(
sample_folder=generated_samples_folder,
seed = seed
)
crop()
def crop():
import generator
res = 64
if res != 0:
results = "generated.png"
img = Image.open(results)
width,height = img.size
top = 2
bottom = 2
for i in range(4):
left = (res+2)*i +2
right = width-(res+2)*i
imgcrop = img.crop((left,top,left+res,res+2))
imgcrop.save(str(i)+".png")
fav = img.crop((10,10,18,18))
fav.save("icon.png")
init()
import numpy
def gen(seed):
numpy.random.seed(seed)
init()
crop()
img0 = Image.open("0.png")
img1 = Image.open("1.png")
img2 = Image.open("2.png")
img3 = Image.open("3.png")
return img0, img1, img2, img3
iface = gr.Interface(
fn=gen,
inputs="text",
outputs=gr.Gallery(label="Generated Skins")
)
iface.launch(inline=True,share=True,width=64,height=64,enable_queue=True)