File size: 1,652 Bytes
e0b1654
8a82feb
 
927cd84
 
ae14095
dec6f1b
7c52e38
0e20c0a
 
 
 
 
 
 
 
 
 
34de9ca
ddf438f
0e20c0a
3ca4172
0e20c0a
 
ae14095
0e20c0a
eeb12be
0e20c0a
636d4f9
0e20c0a
 
 
 
 
 
 
 
 
 
 
 
 
636d4f9
6f8a598
 
dc4d049
3ca4172
 
ae8be33
0e20c0a
 
dc4d049
9071ba0
dc4d049
 
ae14095
e9f39ad
 
 
 
 
 
e0b1654
a9e687d
 
9071ba0
e3f9f06
1d6a3fa
8d44c37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
from image_dataset import ImageDataset
from image_wgan import ImageWgan
import os
from os.path import exists
from PIL import Image
def init():
    generated_samples_folder = "."
    discriminator_saved_model = "discriminator64.model"
    generator_saved_model = "generator64.model"
    latent_space = 100
    image_wgan = ImageWgan(
        image_shape = (4,64,64),
        latent_space_dimension=latent_space,
        generator_saved_model=generator_saved_model if exists(generator_saved_model) else None,
        discriminator_saved_model=discriminator_saved_model if exists(discriminator_saved_model) else None
    )
    image_wgan.generate(
        sample_folder=generated_samples_folder,
        seed = seed
    )
    crop()

def crop():

    import generator
    res = 64
    if res != 0:
        results = "generated.png"
        img = Image.open(results)

        width,height = img.size


        top = 2
        bottom = 2
        for i in range(4):
            left = (res+2)*i +2
            right = width-(res+2)*i
            imgcrop = img.crop((left,top,left+res,res+2))


            imgcrop.save(str(i)+".png")     
        fav = img.crop((10,10,18,18))
        fav.save("icon.png")
init()





import numpy
def gen(seed):
    numpy.random.seed(seed)
    init()
    crop()
    img0 = Image.open("0.png")
    img1 = Image.open("1.png")
    img2 = Image.open("2.png")
    img3 = Image.open("3.png")
    
    return img0, img1, img2, img3

iface = gr.Interface(
    fn=gen, 
    inputs="text", 
    outputs=gr.Gallery(label="Generated Skins")
)
iface.launch(inline=True,share=True,width=64,height=64,enable_queue=True)