Spaces:
Running
Running
import gradio as gr | |
import imgaug.augmenters as iaa | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def augment_image(image, flip, rotate, brightness, noise_scale, elastic_alpha, elastic_sigma): | |
image = np.array(image) | |
# apply augs based on user inputs | |
if flip: | |
flip_aug = iaa.Fliplr(1.0) # flips horizontally 100% of the time | |
image = flip_aug.augment_image(image) | |
rotate_aug = iaa.Affine(rotate=rotate) # rotate by specified num of degrees (if you pass in a touple it will select a random value between options) | |
image = rotate_aug.augment_image(image) | |
brightness_aug = iaa.Multiply(brightness) # adjust brightness | |
image = brightness_aug.augment_image(image) | |
noise_aug = iaa.AdditiveGaussianNoise(scale=(noise_scale)) # eaussian noise | |
image = noise_aug.augment_image(image) | |
elastic_aug = iaa.ElasticTransformation(alpha=elastic_alpha, sigma=elastic_sigma) # elastic transformation | |
image = elastic_aug.augment_image(image) | |
return image | |
def gradio_interface(image, flip, rotate, brightness, noise_scale, elastic_alpha, elastic_sigma): | |
augmented_image = augment_image(image, flip, rotate, brightness, noise_scale, elastic_alpha, elastic_sigma) | |
return augmented_image | |
inputs = [ | |
gr.Image(type="pil"), # Image input | |
gr.Checkbox(label="Flip Image Horizontally"), # Flip input | |
gr.Slider(minimum=-180, maximum=180, step=1, value=0, label="Rotate Image (degrees)"), # Rotation input | |
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Adjust Brightness"), # Brightness input | |
gr.Slider(minimum=0, maximum=100, step=1, value=10, label="Gaussian Noise Scale"), # Noise input | |
gr.Slider(minimum=0, maximum=200, step=10, value=100, label="Elastic Transformation Alpha"), # Elastic Alpha input | |
gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=3.0, label="Elastic Transformation Sigma") # Elastic Sigma input | |
] | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=inputs, | |
outputs=gr.Image(type="numpy"), | |
title="Image Augmentation Demo", | |
description="Try out different data augmentation techniques on your image.", | |
) | |
iface.launch() | |