import gradio as gr import imgaug.augmenters as iaa import cv2 import numpy as np import matplotlib.pyplot as plt def augment_image(image, flip, rotate, brightness, noise_scale, elastic_alpha, elastic_sigma): image = np.array(image) # apply augs based on user inputs if flip: flip_aug = iaa.Fliplr(1.0) # flips horizontally 100% of the time image = flip_aug.augment_image(image) rotate_aug = iaa.Affine(rotate=rotate) # rotate by specified num of degrees (if you pass in a touple it will select a random value between options) image = rotate_aug.augment_image(image) brightness_aug = iaa.Multiply(brightness) # adjust brightness image = brightness_aug.augment_image(image) noise_aug = iaa.AdditiveGaussianNoise(scale=(noise_scale)) # eaussian noise image = noise_aug.augment_image(image) elastic_aug = iaa.ElasticTransformation(alpha=elastic_alpha, sigma=elastic_sigma) # elastic transformation image = elastic_aug.augment_image(image) return image def gradio_interface(image, flip, rotate, brightness, noise_scale, elastic_alpha, elastic_sigma): augmented_image = augment_image(image, flip, rotate, brightness, noise_scale, elastic_alpha, elastic_sigma) return augmented_image inputs = [ gr.Image(type="pil"), # Image input gr.Checkbox(label="Flip Image Horizontally"), # Flip input gr.Slider(minimum=-180, maximum=180, step=1, value=0, label="Rotate Image (degrees)"), # Rotation input gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Adjust Brightness"), # Brightness input gr.Slider(minimum=0, maximum=100, step=1, value=10, label="Gaussian Noise Scale"), # Noise input gr.Slider(minimum=0, maximum=200, step=10, value=100, label="Elastic Transformation Alpha"), # Elastic Alpha input gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=3.0, label="Elastic Transformation Sigma") # Elastic Sigma input ] iface = gr.Interface( fn=gradio_interface, inputs=inputs, outputs=gr.Image(type="numpy"), title="Image Augmentation Demo", description="Try out different data augmentation techniques on your image.", ) iface.launch()