w2vec-app / app.py
mauriciogtec's picture
add note about safari
dc1e245
from shiny import App, ui, render, reactive
from shiny.ui import HTML, tags
import shinyswatch
import torch
import pandas as pd
import numpy as np
import io
import torch.nn.functional as F
from utils import load_training_data, load_models
MONTHS = {
0: "Jan",
1: "Feb",
2: "Mar",
3: "Apr",
4: "May",
5: "Jun",
6: "Jul",
7: "Aug",
8: "Sep",
9: "Oct",
10: "Nov",
11: "Dec",
}
YEARS = list(range(2000, 2015))
RESOLUTIONS = {
"0": "Local",
"1": "32 km",
"3": "96 km",
"5": "160 km",
"7": "224 km",
"9": "288 km",
}
WCOLS = {
"air.2m.mon.mean.nc": "temperature at 2m",
# "air.sfc.mon.mean.nc": "surface temperature",
"apcp.mon.mean.nc": "total precipitation",
# "acpcp.mon.mean.nc": "acc. convective precip",
# "tcdc.mon.mean.nc": "total cloud cover",
# "dswrf.mon.mean.nc": "down short rads flux",
# "hpbl.mon.mean.nc": "planet boundary layer height",
"rhum.2m.mon.mean.nc": "relative humidity",
"vwnd.10m.mon.mean.nc": "(north-south) wind component",
"uwnd.10m.mon.mean.nc": "(east-west) wind component",
}
# RESOLUTION CONSTANTS
NROW = 128
NCOL = 256
XMIN = -135.0
XMAX = -60.0
YMIN = 20.0
YMAX = 52.0
DLON = (XMAX - XMIN) / NCOL
DLAT = (YMIN - YMAX) / NROW
# Load non-reactivelye
C, NAMES, Y, M = load_training_data(
path="data/training_data.pkl",
standardize_so4=True,
log_so4=True,
year_averages=True,
)
ND = C.shape[1]
_, _, YRAW, MRAW = load_training_data(path="data/training_data.pkl")
DIRS = {
"1": f"./data/weights/h1_w2vec",
"3": f"./data/weights/h3_w2vec",
"5": f"./data/weights/h5_w2vec",
"7": f"./data/weights/h7_w2vec",
"9": f"./data/weights/h9_w2vec",
}
MODELS = load_models(DIRS, prefix="h", nd=ND)
multicol_html = tags.head(
tags.style(
HTML(
".multicol {"
# "height: 150px; "
"-webkit-column-count: 3;" # chrome, safari, opera
"-moz-column-count: 3;" # firefox
"column-count: 3;"
"-moz-column-fill: auto;"
"-column-fill: auto;"
)
)
)
instructions = f"""
### Instructions
Upload a CSV file with columns (id, lat, lon) using the `Browse` button on the sidebar.
Below is an example of the contents of the file:
```
id,lat,lon
0,47.5,-122.5
1,47.5,-122.25
2,47.5,-122.0
3,47.5,-121.75
4,47.5,-121.5
```
The id column can be any identifier, or the column can be ommited, in which case the row number will be used as the id.
Make sure that the latitude is before the longitude column in the CSV file. The valid range for latitude is
{YMIN} to {YMAX} and longitude is {XMIN} to {XMAX}, which cover the contiguous United States.
The resolution corresponds to how much neighboring information is captured by the embedding. If `local` is selected,
the original weather covariates will be returned. Currently, all the embeddings correspond to the variables:
* `air.2m.mon.mean.nc`: temperature at 2m
* `apcp.mon.mean.nc`: total precipitation
* `rhum.2m.mon.mean.nc`: relative humidity
* `vwnd.10m.mon.mean.nc`: (north-south) wind component
* `uwnd.10m.mon.mean.nc`: (east-west) wind component
The radius corresponds to the number of neighboring raster cells to include in weather2vec representation. A resolution of 96km means that the embeddings encodes informations from all nearby raster cells whose centers are less than 96km. All embeddings have 10 hidden dimensions.
The embeddings also record information of the 12-month moving average. For this reason, the 'local' embeddings also have dimension 10, the first 5 dimensions correspond to the 5 meteorological variables in a given month, and the last 5 dimensions correspond to their 12-month moving average. For the non-local embeddings, the order of the variables is not interpretable.
### Download
"""
citation = """
### Citation
Tec, M., Scott, J.G. and Zigler, C.M., 2023. "Weather2vec: Representation learning for causal inference with non-local confounding in air pollution and climate studies". In: *Proceedings of the AAAI Conference on Artificial Intelligence*.
```
@inproceedings{tec2023weather2vec,
title={Weather2vec: Representation learning for causal inference with non-local confounding in air pollution and climate studies},
author={Tec, Mauricio and Scott, James G and Zigler, Corwin M},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
number={12},
pages={14504--14513},
year={2023}
}
```
"""
# After uploading the file, the app will generate a CSV, a download link will appear here.
# The CSV will contain the following columns:
# Part 1: ui ----
app_ui = ui.page_fluid(
shinyswatch.theme.minty(),
multicol_html,
ui.panel_title("Welcome to the Weather2vec Embedding Generator!"),
ui.layout_sidebar(
ui.panel_sidebar(
ui.input_file("df", "Upload CSV File", accept=".csv"),
tags.div(
ui.input_checkbox_group("months", HTML("<b>Months</b>"), MONTHS, selected=list(MONTHS.keys())),
class_="multicol",
align="left",
inline=False,
),
HTML(
"<b>Note:</b> Embedding of multiple months will be added.<br>True multi-temporal embeddings will be supported in the future.<br><br>"
),
tags.div(
ui.input_radio_buttons("year", HTML("<b>Year</b>"), YEARS),
class_="multicol",
align="left",
inline=False,
),
HTML("<br>"),
tags.div(
ui.input_radio_buttons(
"resolution", HTML("<b>Resolution</b>"), RESOLUTIONS, selected="9"
),
class_="multicol",
align="left",
inline=False,
),
HTML("<br>"),
ui.download_link("download_test", "Download an example input file here."),
HTML("<br><b>Note</b>There are some issues with scrolling using Safari, try a different browser please."),
width=4,
),
ui.panel_main(
ui.markdown(instructions),
ui.output_ui("download_ui"),
ui.markdown(citation),
),
),
)
# Part 2: server ----
def server(input, output, session):
@output
@render.ui
def download_ui():
if input.df() is None:
return HTML("<font color=red>Upload a CSV file first. A download button will appear here.</font>")
else:
return ui.div(
ui.download_button("download", "Download Embeddings"),
ui.output_data_frame("embs_preview"),
)
@output
@render.data_frame
def embs_preview():
df_embs_ = df_embs()
if df_embs_ is None:
return None
else:
return df_embs_.reset_index().head()
@reactive.Calc
def df_embs():
if input.df() is None:
return None
# read input file
print(input.df()[-1].keys())
fname = input.df()[-1]["datapath"]
df = pd.read_csv(fname)
if df.shape[1] > 2:
first_col = df.columns[0]
df = df.set_index(first_col)
months = np.array(input.months(), dtype=int)
year = int(input.year())
if len(months) == 0:
raise ValueError("Must select at least one month.")
# obtain temporal indices
idxs = (year - 2000) * 12 + months - 1
Ct = torch.FloatTensor(C)[idxs]
# compute row, col from lat, lon
lat = df.values[:, -2]
lon = df.values[:, -1]
#
interp_factor = 32
dlon_ = DLON / interp_factor
dlat_ = DLAT / interp_factor
col = (lon - XMIN) // dlon_
row = (lat - YMAX) // dlat_
# get model from resolution
resolution = input.resolution()
if resolution == "0":
Z = Ct.mean(0)
else:
key = DIRS[resolution]
mod = MODELS[key]["mod"]
# evaluate model on input locations
with torch.no_grad():
Z = mod["enc"](Ct).mean(0)
# use bilinear interpolation to augment resolution
Z = F.interpolate(
Z[None],
scale_factor=interp_factor,
mode="bilinear",
align_corners=False,
)
# get embedding at input locations
Z = Z[0, :, row, col].squeeze(0).squeeze(0).numpy().T
# add to dataframe
df_embs = pd.DataFrame(Z, columns=[f"Z{i:02d}" for i in range(Z.shape[1])])
df_embs.index = df.index
if df.shape[1] > 2:
df_id = df.iloc[:, :-2]
df_embs = pd.concat([df_id, df_embs], axis=1)
return df_embs
@session.download(filename="embeddings.csv")
def download():
if input.df() is None:
raise ValueError("Upload a CSV file first.")
with io.BytesIO() as f:
df_embs().to_csv(f, index=False)
yield f.getvalue()
@session.download(filename="test-input.csv")
def download_test():
with io.BytesIO() as f:
df = pd.read_csv("data/test-data.csv")
df.to_csv(f, index=False)
yield f.getvalue()
# Combine into a shiny app.
# Note that the variable must be "app".
app = App(app_ui, server)