Spaces:
Running
Running
File size: 9,433 Bytes
6f47252 f049087 c1459bc 89012a4 6f47252 89012a4 f049087 6f47252 f049087 89012a4 f049087 c1459bc f049087 c1459bc f049087 89012a4 f049087 c1459bc f049087 89012a4 f049087 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 c1459bc f049087 c1459bc 6f47252 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 6f9c42d dc1e245 89012a4 6f47252 89012a4 6f47252 89012a4 c1459bc f049087 89012a4 6f47252 89012a4 6f47252 89012a4 6f47252 89012a4 c1459bc 6f47252 89012a4 6f47252 c1459bc 6f9c42d f049087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
from shiny import App, ui, render, reactive
from shiny.ui import HTML, tags
import shinyswatch
import torch
import pandas as pd
import numpy as np
import io
import torch.nn.functional as F
from utils import load_training_data, load_models
MONTHS = {
0: "Jan",
1: "Feb",
2: "Mar",
3: "Apr",
4: "May",
5: "Jun",
6: "Jul",
7: "Aug",
8: "Sep",
9: "Oct",
10: "Nov",
11: "Dec",
}
YEARS = list(range(2000, 2015))
RESOLUTIONS = {
"0": "Local",
"1": "32 km",
"3": "96 km",
"5": "160 km",
"7": "224 km",
"9": "288 km",
}
WCOLS = {
"air.2m.mon.mean.nc": "temperature at 2m",
# "air.sfc.mon.mean.nc": "surface temperature",
"apcp.mon.mean.nc": "total precipitation",
# "acpcp.mon.mean.nc": "acc. convective precip",
# "tcdc.mon.mean.nc": "total cloud cover",
# "dswrf.mon.mean.nc": "down short rads flux",
# "hpbl.mon.mean.nc": "planet boundary layer height",
"rhum.2m.mon.mean.nc": "relative humidity",
"vwnd.10m.mon.mean.nc": "(north-south) wind component",
"uwnd.10m.mon.mean.nc": "(east-west) wind component",
}
# RESOLUTION CONSTANTS
NROW = 128
NCOL = 256
XMIN = -135.0
XMAX = -60.0
YMIN = 20.0
YMAX = 52.0
DLON = (XMAX - XMIN) / NCOL
DLAT = (YMIN - YMAX) / NROW
# Load non-reactivelye
C, NAMES, Y, M = load_training_data(
path="data/training_data.pkl",
standardize_so4=True,
log_so4=True,
year_averages=True,
)
ND = C.shape[1]
_, _, YRAW, MRAW = load_training_data(path="data/training_data.pkl")
DIRS = {
"1": f"./data/weights/h1_w2vec",
"3": f"./data/weights/h3_w2vec",
"5": f"./data/weights/h5_w2vec",
"7": f"./data/weights/h7_w2vec",
"9": f"./data/weights/h9_w2vec",
}
MODELS = load_models(DIRS, prefix="h", nd=ND)
multicol_html = tags.head(
tags.style(
HTML(
".multicol {"
# "height: 150px; "
"-webkit-column-count: 3;" # chrome, safari, opera
"-moz-column-count: 3;" # firefox
"column-count: 3;"
"-moz-column-fill: auto;"
"-column-fill: auto;"
)
)
)
instructions = f"""
### Instructions
Upload a CSV file with columns (id, lat, lon) using the `Browse` button on the sidebar.
Below is an example of the contents of the file:
```
id,lat,lon
0,47.5,-122.5
1,47.5,-122.25
2,47.5,-122.0
3,47.5,-121.75
4,47.5,-121.5
```
The id column can be any identifier, or the column can be ommited, in which case the row number will be used as the id.
Make sure that the latitude is before the longitude column in the CSV file. The valid range for latitude is
{YMIN} to {YMAX} and longitude is {XMIN} to {XMAX}, which cover the contiguous United States.
The resolution corresponds to how much neighboring information is captured by the embedding. If `local` is selected,
the original weather covariates will be returned. Currently, all the embeddings correspond to the variables:
* `air.2m.mon.mean.nc`: temperature at 2m
* `apcp.mon.mean.nc`: total precipitation
* `rhum.2m.mon.mean.nc`: relative humidity
* `vwnd.10m.mon.mean.nc`: (north-south) wind component
* `uwnd.10m.mon.mean.nc`: (east-west) wind component
The radius corresponds to the number of neighboring raster cells to include in weather2vec representation. A resolution of 96km means that the embeddings encodes informations from all nearby raster cells whose centers are less than 96km. All embeddings have 10 hidden dimensions.
The embeddings also record information of the 12-month moving average. For this reason, the 'local' embeddings also have dimension 10, the first 5 dimensions correspond to the 5 meteorological variables in a given month, and the last 5 dimensions correspond to their 12-month moving average. For the non-local embeddings, the order of the variables is not interpretable.
### Download
"""
citation = """
### Citation
Tec, M., Scott, J.G. and Zigler, C.M., 2023. "Weather2vec: Representation learning for causal inference with non-local confounding in air pollution and climate studies". In: *Proceedings of the AAAI Conference on Artificial Intelligence*.
```
@inproceedings{tec2023weather2vec,
title={Weather2vec: Representation learning for causal inference with non-local confounding in air pollution and climate studies},
author={Tec, Mauricio and Scott, James G and Zigler, Corwin M},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
number={12},
pages={14504--14513},
year={2023}
}
```
"""
# After uploading the file, the app will generate a CSV, a download link will appear here.
# The CSV will contain the following columns:
# Part 1: ui ----
app_ui = ui.page_fluid(
shinyswatch.theme.minty(),
multicol_html,
ui.panel_title("Welcome to the Weather2vec Embedding Generator!"),
ui.layout_sidebar(
ui.panel_sidebar(
ui.input_file("df", "Upload CSV File", accept=".csv"),
tags.div(
ui.input_checkbox_group("months", HTML("<b>Months</b>"), MONTHS, selected=list(MONTHS.keys())),
class_="multicol",
align="left",
inline=False,
),
HTML(
"<b>Note:</b> Embedding of multiple months will be added.<br>True multi-temporal embeddings will be supported in the future.<br><br>"
),
tags.div(
ui.input_radio_buttons("year", HTML("<b>Year</b>"), YEARS),
class_="multicol",
align="left",
inline=False,
),
HTML("<br>"),
tags.div(
ui.input_radio_buttons(
"resolution", HTML("<b>Resolution</b>"), RESOLUTIONS, selected="9"
),
class_="multicol",
align="left",
inline=False,
),
HTML("<br>"),
ui.download_link("download_test", "Download an example input file here."),
HTML("<br><b>Note</b>There are some issues with scrolling using Safari, try a different browser please."),
width=4,
),
ui.panel_main(
ui.markdown(instructions),
ui.output_ui("download_ui"),
ui.markdown(citation),
),
),
)
# Part 2: server ----
def server(input, output, session):
@output
@render.ui
def download_ui():
if input.df() is None:
return HTML("<font color=red>Upload a CSV file first. A download button will appear here.</font>")
else:
return ui.div(
ui.download_button("download", "Download Embeddings"),
ui.output_data_frame("embs_preview"),
)
@output
@render.data_frame
def embs_preview():
df_embs_ = df_embs()
if df_embs_ is None:
return None
else:
return df_embs_.reset_index().head()
@reactive.Calc
def df_embs():
if input.df() is None:
return None
# read input file
print(input.df()[-1].keys())
fname = input.df()[-1]["datapath"]
df = pd.read_csv(fname)
if df.shape[1] > 2:
first_col = df.columns[0]
df = df.set_index(first_col)
months = np.array(input.months(), dtype=int)
year = int(input.year())
if len(months) == 0:
raise ValueError("Must select at least one month.")
# obtain temporal indices
idxs = (year - 2000) * 12 + months - 1
Ct = torch.FloatTensor(C)[idxs]
# compute row, col from lat, lon
lat = df.values[:, -2]
lon = df.values[:, -1]
#
interp_factor = 32
dlon_ = DLON / interp_factor
dlat_ = DLAT / interp_factor
col = (lon - XMIN) // dlon_
row = (lat - YMAX) // dlat_
# get model from resolution
resolution = input.resolution()
if resolution == "0":
Z = Ct.mean(0)
else:
key = DIRS[resolution]
mod = MODELS[key]["mod"]
# evaluate model on input locations
with torch.no_grad():
Z = mod["enc"](Ct).mean(0)
# use bilinear interpolation to augment resolution
Z = F.interpolate(
Z[None],
scale_factor=interp_factor,
mode="bilinear",
align_corners=False,
)
# get embedding at input locations
Z = Z[0, :, row, col].squeeze(0).squeeze(0).numpy().T
# add to dataframe
df_embs = pd.DataFrame(Z, columns=[f"Z{i:02d}" for i in range(Z.shape[1])])
df_embs.index = df.index
if df.shape[1] > 2:
df_id = df.iloc[:, :-2]
df_embs = pd.concat([df_id, df_embs], axis=1)
return df_embs
@session.download(filename="embeddings.csv")
def download():
if input.df() is None:
raise ValueError("Upload a CSV file first.")
with io.BytesIO() as f:
df_embs().to_csv(f, index=False)
yield f.getvalue()
@session.download(filename="test-input.csv")
def download_test():
with io.BytesIO() as f:
df = pd.read_csv("data/test-data.csv")
df.to_csv(f, index=False)
yield f.getvalue()
# Combine into a shiny app.
# Note that the variable must be "app".
app = App(app_ui, server)
|