Spaces:
Runtime error
Runtime error
Commit
·
f3350b1
1
Parent(s):
15b101a
Add TCN
Browse files- cfg/model/tcn.yaml +27 -0
- remfx/models.py +31 -0
- remfx/tcn.py +145 -0
- remfx/utils.py +12 -0
cfg/model/tcn.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
model:
|
3 |
+
_target_: remfx.models.RemFX
|
4 |
+
lr: 1e-4
|
5 |
+
lr_beta1: 0.95
|
6 |
+
lr_beta2: 0.999
|
7 |
+
lr_eps: 1e-6
|
8 |
+
lr_weight_decay: 1e-3
|
9 |
+
sample_rate: ${sample_rate}
|
10 |
+
network:
|
11 |
+
_target_: remfx.models.TCNModel
|
12 |
+
ninputs: 1
|
13 |
+
noutputs: 1
|
14 |
+
nblocks: 4
|
15 |
+
channel_growth: 0
|
16 |
+
channel_width: 32
|
17 |
+
kernel_size: 13
|
18 |
+
stack_size: 10
|
19 |
+
dilation_growth: 10
|
20 |
+
condition: False
|
21 |
+
latent_dim: 2
|
22 |
+
norm_type: "identity"
|
23 |
+
causal: False
|
24 |
+
estimate_loudness: False
|
25 |
+
sample_rate: ${sample_rate}
|
26 |
+
num_bins: 1025
|
27 |
+
|
remfx/models.py
CHANGED
@@ -12,6 +12,7 @@ from umx.openunmix.model import OpenUnmix, Separator
|
|
12 |
from remfx.utils import FADLoss, spectrogram
|
13 |
from remfx.dptnet import DPTNet_base
|
14 |
from remfx.dcunet import RefineSpectrogramUnet
|
|
|
15 |
|
16 |
|
17 |
class RemFX(pl.LightningModule):
|
@@ -240,6 +241,36 @@ class DCUNetModel(nn.Module):
|
|
240 |
return output
|
241 |
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
class FXClassifier(pl.LightningModule):
|
244 |
def __init__(
|
245 |
self,
|
|
|
12 |
from remfx.utils import FADLoss, spectrogram
|
13 |
from remfx.dptnet import DPTNet_base
|
14 |
from remfx.dcunet import RefineSpectrogramUnet
|
15 |
+
from remfx.tcn import TCN
|
16 |
|
17 |
|
18 |
class RemFX(pl.LightningModule):
|
|
|
241 |
return output
|
242 |
|
243 |
|
244 |
+
class TCNModel(nn.Module):
|
245 |
+
def __init__(self, sample_rate, num_bins, **kwargs):
|
246 |
+
super().__init__()
|
247 |
+
self.model = TCN(**kwargs)
|
248 |
+
self.mrstftloss = MultiResolutionSTFTLoss(
|
249 |
+
n_bins=num_bins, sample_rate=sample_rate
|
250 |
+
)
|
251 |
+
self.l1loss = nn.L1Loss()
|
252 |
+
|
253 |
+
def forward(self, batch):
|
254 |
+
x, target = batch
|
255 |
+
output = self.model(x) # B x 1 x T
|
256 |
+
# Pad or crop to match target
|
257 |
+
if output.shape[-1] > x.shape[-1]:
|
258 |
+
output = output[:, : x.shape[-1]]
|
259 |
+
elif output.shape[-1] < x.shape[-1]:
|
260 |
+
output = F.pad(output, (0, x.shape[-1] - output.shape[-1]))
|
261 |
+
loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
|
262 |
+
return loss, output
|
263 |
+
|
264 |
+
def sample(self, x: Tensor) -> Tensor:
|
265 |
+
output = self.model(x) # B x 1 x T
|
266 |
+
# Pad or crop to match target
|
267 |
+
if output.shape[-1] > x.shape[-1]:
|
268 |
+
output = output[:, : x.shape[-1]]
|
269 |
+
elif output.shape[-1] < x.shape[-1]:
|
270 |
+
output = F.pad(output, (0, x.shape[-1] - output.shape[-1]))
|
271 |
+
return output
|
272 |
+
|
273 |
+
|
274 |
class FXClassifier(pl.LightningModule):
|
275 |
def __init__(
|
276 |
self,
|
remfx/tcn.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is based on the following repository written by Christian J. Steinmetz
|
2 |
+
# https://github.com/csteinmetz1/micro-tcn
|
3 |
+
from typing import Callable
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch import Tensor
|
7 |
+
|
8 |
+
from remfx.utils import causal_crop, center_crop
|
9 |
+
|
10 |
+
|
11 |
+
class TCNBlock(nn.Module):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
in_ch: int,
|
15 |
+
out_ch: int,
|
16 |
+
kernel_size: int = 3,
|
17 |
+
dilation: int = 1,
|
18 |
+
stride: int = 1,
|
19 |
+
crop_fn: Callable = causal_crop,
|
20 |
+
) -> None:
|
21 |
+
super().__init__()
|
22 |
+
self.in_ch = in_ch
|
23 |
+
self.out_ch = out_ch
|
24 |
+
self.kernel_size = kernel_size
|
25 |
+
self.stride = stride
|
26 |
+
|
27 |
+
self.crop_fn = crop_fn
|
28 |
+
# Assumes stride of 1
|
29 |
+
padding = (kernel_size + (kernel_size - 1) * (dilation - 1) - 1) // 2
|
30 |
+
self.conv1 = nn.Conv1d(
|
31 |
+
in_ch,
|
32 |
+
out_ch,
|
33 |
+
kernel_size,
|
34 |
+
stride=stride,
|
35 |
+
padding=0,
|
36 |
+
dilation=dilation,
|
37 |
+
bias=True,
|
38 |
+
)
|
39 |
+
# residual connection
|
40 |
+
self.res = nn.Conv1d(
|
41 |
+
in_ch,
|
42 |
+
out_ch,
|
43 |
+
kernel_size=1,
|
44 |
+
groups=1,
|
45 |
+
stride=stride,
|
46 |
+
bias=False,
|
47 |
+
)
|
48 |
+
self.relu = nn.PReLU(out_ch)
|
49 |
+
|
50 |
+
def forward(self, x: Tensor) -> Tensor:
|
51 |
+
x_in = x
|
52 |
+
x = self.conv1(x)
|
53 |
+
x = self.relu(x)
|
54 |
+
|
55 |
+
# residual
|
56 |
+
x_res = self.res(x_in)
|
57 |
+
|
58 |
+
# causal crop
|
59 |
+
x = x + self.crop_fn(x_res, x.shape[-1])
|
60 |
+
|
61 |
+
return x
|
62 |
+
|
63 |
+
|
64 |
+
class TCN(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
ninputs: int = 1,
|
68 |
+
noutputs: int = 1,
|
69 |
+
nblocks: int = 4,
|
70 |
+
channel_growth: int = 0,
|
71 |
+
channel_width: int = 32,
|
72 |
+
kernel_size: int = 13,
|
73 |
+
stack_size: int = 10,
|
74 |
+
dilation_growth: int = 10,
|
75 |
+
condition: bool = False,
|
76 |
+
latent_dim: int = 2,
|
77 |
+
norm_type: str = "identity",
|
78 |
+
causal: bool = False,
|
79 |
+
estimate_loudness: bool = False,
|
80 |
+
) -> None:
|
81 |
+
super().__init__()
|
82 |
+
self.ninputs = ninputs
|
83 |
+
self.noutputs = noutputs
|
84 |
+
self.nblocks = nblocks
|
85 |
+
self.channel_growth = channel_growth
|
86 |
+
self.channel_width = channel_width
|
87 |
+
self.kernel_size = kernel_size
|
88 |
+
self.stack_size = stack_size
|
89 |
+
self.dilation_growth = dilation_growth
|
90 |
+
self.condition = condition
|
91 |
+
self.latent_dim = latent_dim
|
92 |
+
self.norm_type = norm_type
|
93 |
+
self.causal = causal
|
94 |
+
self.estimate_loudness = estimate_loudness
|
95 |
+
|
96 |
+
print(f"Causal: {self.causal}")
|
97 |
+
if self.causal:
|
98 |
+
self.crop_fn = causal_crop
|
99 |
+
else:
|
100 |
+
self.crop_fn = center_crop
|
101 |
+
|
102 |
+
if estimate_loudness:
|
103 |
+
self.loudness = torch.nn.Linear(latent_dim, 1)
|
104 |
+
|
105 |
+
# audio model
|
106 |
+
self.process_blocks = torch.nn.ModuleList()
|
107 |
+
out_ch = -1
|
108 |
+
for n in range(nblocks):
|
109 |
+
in_ch = out_ch if n > 0 else ninputs
|
110 |
+
out_ch = in_ch * channel_growth if channel_growth > 1 else channel_width
|
111 |
+
dilation = dilation_growth ** (n % stack_size)
|
112 |
+
self.process_blocks.append(
|
113 |
+
TCNBlock(
|
114 |
+
in_ch,
|
115 |
+
out_ch,
|
116 |
+
kernel_size,
|
117 |
+
dilation,
|
118 |
+
stride=1,
|
119 |
+
crop_fn=self.crop_fn,
|
120 |
+
)
|
121 |
+
)
|
122 |
+
self.output = nn.Conv1d(out_ch, noutputs, kernel_size=1)
|
123 |
+
|
124 |
+
# model configuration
|
125 |
+
self.receptive_field = self.compute_receptive_field()
|
126 |
+
self.block_size = 2048
|
127 |
+
self.buffer = torch.zeros(2, self.receptive_field + self.block_size - 1)
|
128 |
+
|
129 |
+
def forward(self, x: Tensor) -> Tensor:
|
130 |
+
x_in = x
|
131 |
+
for _, block in enumerate(self.process_blocks):
|
132 |
+
x = block(x)
|
133 |
+
# y_hat = torch.tanh(self.output(x))
|
134 |
+
x_in = causal_crop(x_in, x.shape[-1])
|
135 |
+
gain_ln = self.output(x)
|
136 |
+
y_hat = torch.tanh(gain_ln * x_in)
|
137 |
+
return y_hat
|
138 |
+
|
139 |
+
def compute_receptive_field(self):
|
140 |
+
"""Compute the receptive field in samples."""
|
141 |
+
rf = self.kernel_size
|
142 |
+
for n in range(1, self.nblocks):
|
143 |
+
dilation = self.dilation_growth ** (n % self.stack_size)
|
144 |
+
rf = rf + ((self.kernel_size - 1) * dilation)
|
145 |
+
return rf
|
remfx/utils.py
CHANGED
@@ -204,3 +204,15 @@ def concat_complex(a: torch.tensor, b: torch.tensor, dim: int = 1) -> torch.tens
|
|
204 |
a_real, a_img = a.chunk(2, dim)
|
205 |
b_real, b_img = b.chunk(2, dim)
|
206 |
return torch.cat([a_real, b_real, a_img, b_img], dim=dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
a_real, a_img = a.chunk(2, dim)
|
205 |
b_real, b_img = b.chunk(2, dim)
|
206 |
return torch.cat([a_real, b_real, a_img, b_img], dim=dim)
|
207 |
+
|
208 |
+
|
209 |
+
def center_crop(x, length: int):
|
210 |
+
start = (x.shape[-1] - length) // 2
|
211 |
+
stop = start + length
|
212 |
+
return x[..., start:stop]
|
213 |
+
|
214 |
+
|
215 |
+
def causal_crop(x, length: int):
|
216 |
+
stop = x.shape[-1] - 1
|
217 |
+
start = stop - length
|
218 |
+
return x[..., start:stop]
|