Spaces:
Runtime error
Runtime error
File size: 20,849 Bytes
c0a944c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import io
import copy
import librosa
import numpy as np
AUDIO_TOKEN_FORMAT = "<|{}|>"
DEFAULT_SYSTEM_START_TOKEN = "<SYSTEM>"
DEFAULT_SYSTEM_END_TOKEN = "</SYSTEM>"
DEFAULT_TTS_REF_START_TOKEN = "<au_tts_ref_start>"
DEFAULT_TTS_REF_END_TOKEN = "<au_tts_ref_end>"
DEFAULT_TTS_REF_TOKEN = "<au_tts_ref>"
DEFAULT_CHAT_REF_START_TOKEN = "<au_chat_ref_start>"
DEFAULT_CHAT_REF_END_TOKEN = "<au_chat_ref_end>"
DEFAULT_CHAT_REF_TOKEN = "<au_chat_ref>"
DEFAULT_HUMAN_TOKEN = "<|HUMAN|>"
DEFAULT_ASSISTANT_TOKEN = "<|VOILA|>"
DEFAULT_AUDIO_TOKEN = "<au_token>"
# ===================================
# task special token
# -----------------------------------
TASK_ASR_TOKEN = "<asr>"
TASK_TTS_TOKEN = "<tts>"
TASK_CHAT_TOKEN = "<chat>"
TASK_STREAM_CHAT_TOKEN = "<stream_chat>"
TASK_ASR_TEXT_OUTPUT = "<asr_text_output>"
TASK_TTS_AUDIO_OUTPUT = "<tts_audio_output>"
TASK_CHAT_TEXT_OUTPUT = "<chat_text_output>"
TASK_CHAT_AUDIO_OUTPUT = "<chat_audio_output>"
CHAT_AUDIO_TEXT_SPLIT_TOKEN = "<chat_audio_text_split>"
# ===================================
PREPEND_LEN = 80
SEG_LEN = 640
AUDIO_SR = 16000
TASK_TYPE_CONF = {
"chat_asr": TASK_ASR_TOKEN + TASK_ASR_TEXT_OUTPUT,
"chat_tts": TASK_TTS_TOKEN + TASK_TTS_AUDIO_OUTPUT,
"chat_tito": TASK_CHAT_TOKEN + TASK_CHAT_TEXT_OUTPUT,
"chat_tiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
"chat_aiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
"chat_atiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
"chat_aiao_auto": TASK_STREAM_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
}
def _get_zero_audio_pad(token_num):
return np.zeros(SEG_LEN*token_num)
def _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size):
ret_audio_tokens = []
for n in range(num_codebooks):
audio_token = audio_tokens[n]
ret_audio_tokens.append(''.join([AUDIO_TOKEN_FORMAT.format(au + n*codebook_size) if isinstance(au, int) else au for au in audio_token]))
return ret_audio_tokens
def _wrapper_audio_tokens_autonomous(audio_tokens, num_codebooks, codebook_size, audio_token_min_id):
ret_audio_tokens = []
for n in range(num_codebooks):
audio_token = audio_tokens[n]
ret_audio_tokens.append([(au + n*codebook_size + audio_token_min_id) for au in audio_token])
return ret_audio_tokens
# Item format
# {
# "instruction": "",
# "conversations": [
# {
# "from": "user" or "assistant",
# "text": "",
# "audio": {
# "array": [],
# "sr": 16000,
# "bytes": "",
# "file": "",
# },
# }
# ],
# }
def _token_input_format(item, tokenizer, tokenizer_voila, dataset_cfg):
task_type = dataset_cfg["task_type"]
num_codebooks = dataset_cfg["num_codebooks"]
codebook_size = dataset_cfg["codebook_size"]
task_token = TASK_TYPE_CONF[task_type]
# Construct system message
system = item["instruction"]
if task_type in ["chat_aiao", "chat_atiao", "chat_tiao"]:
system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN + system
elif task_type == "chat_tts":
system = DEFAULT_TTS_REF_START_TOKEN + DEFAULT_TTS_REF_TOKEN + DEFAULT_TTS_REF_END_TOKEN + system
else:
print (f"task type {task_type} do not use ref.")
system = task_token + system
system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN
# Get ids for system
system_ids = tokenizer.encode(system, add_special_tokens=False)
# Copy into num_codebooks input ids
input_ids_list = []
for _ in range(num_codebooks):
input_ids_list.append(copy.deepcopy(system_ids))
# Assemble conversations
for i, turn in enumerate(item["conversations"]):
if turn['from'] == 'assistant':
# task with audio token as input, prepare audio token
if task_type in ["chat_aiao", "chat_tts"]:
if "audio" not in turn:
content = DEFAULT_ASSISTANT_TOKEN
content_ids = tokenizer.encode(content, add_special_tokens=False)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
else:
# Load audio
if 'array' in turn['audio']:
assert "sr" in turn["audio"]
if len(turn["audio"]['array'].shape) > 1:
assert turn["audio"]['array'].shape[0] <= 2
turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
elif "bytes" in turn['audio']:
audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
elif "file" in turn['audio']:
audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
else:
raise Exception(f"No audio input for task {task_type}")
# get audio token
audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
audio_tokens = audio_tokens.cpu().numpy().tolist()
audio_tokens = _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size)
for n in range(num_codebooks):
content = DEFAULT_ASSISTANT_TOKEN + audio_tokens[n] + tokenizer.eos_token
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
input_ids_list[n] += content_ids
elif task_type in ["chat_tito", "chat_asr"]:
if "text" not in turn:
content = DEFAULT_ASSISTANT_TOKEN
content_ids = tokenizer.encode(content, add_special_tokens=False)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
else:
text = turn['text'].strip()
content = DEFAULT_ASSISTANT_TOKEN + text + tokenizer.eos_token
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
else:
raise ValueError (f"[Error] Invalid data type of {task_type}.")
else:
# task with audio token as input, prepare audio token
if task_type in ["chat_aiao", "chat_asr"]:
# Load audio
assert "audio" in turn
if 'array' in turn['audio']:
assert "sr" in turn["audio"]
if len(turn["audio"]['array'].shape) > 1:
assert turn["audio"]['array'].shape[0] <= 2
turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
elif "bytes" in turn['audio']:
audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
elif "file" in turn['audio']:
audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
else:
raise Exception(f"No audio input for task {task_type}")
# get audio token
audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
audio_tokens = audio_tokens.cpu().numpy().tolist()
audio_tokens = _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size)
for n in range(num_codebooks):
content = DEFAULT_HUMAN_TOKEN + audio_tokens[n]
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
input_ids_list[n] += copy.deepcopy(content_ids)
elif task_type in ["chat_tito", "chat_tts"]:
text = turn['text'].strip()
content = DEFAULT_HUMAN_TOKEN + text
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
else:
raise ValueError (f"[Error] Invalid data type of {task_type}.")
for n in range(num_codebooks):
input_ids_list[n] = input_ids_list[n][:tokenizer.model_max_length]
return input_ids_list, None, None, None
def _token_input_format_autonomous(item, tokenizer, tokenizer_voila, dataset_cfg):
task_type = dataset_cfg["task_type"]
num_codebooks = dataset_cfg["num_codebooks"]
codebook_size = dataset_cfg["codebook_size"]
assert task_type == "chat_aiao_auto", f"only support chat_aiao_auto, {task_type} is invalid"
DEFAULT_HUMAN_TOKEN_ID = tokenizer.convert_tokens_to_ids(DEFAULT_HUMAN_TOKEN)
assert isinstance(DEFAULT_HUMAN_TOKEN_ID, int), "DEFAULT_HUMAN_TOKEN_ID should be an integer"
AUDIO_MIN_TOKEN_ID = tokenizer.convert_tokens_to_ids(AUDIO_TOKEN_FORMAT.format(0))
assert isinstance(AUDIO_MIN_TOKEN_ID, int), "AUDIO_MIN_TOKEN_ID should be an integer"
task_token = TASK_TYPE_CONF[task_type]
# Construct system message
system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN
system = task_token + system
system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN
# Get ids for system
system_ids_list = [[], []]
system_ids = tokenizer.encode(system, add_special_tokens=False)
# Insert instruction tokens into system prompt tokens
instruction = item["instruction"]
if instruction != "":
instruction_ids = tokenizer.encode(instruction, add_special_tokens=False)
else:
instruction_ids = []
system_ids_list[0] = system_ids[:-1] + instruction_ids + system_ids[-1:]
system_ids_list[1] = system_ids[:-1] + instruction_ids + system_ids[-1:]
# Copy into num_codebooks input ids
channel1_input_ids_list = [[] for _ in range(num_codebooks)]
channel2_input_ids_list = [[] for _ in range(num_codebooks)]
for n in range(num_codebooks):
channel1_input_ids_list[n] += copy.deepcopy(system_ids_list[0]) + [DEFAULT_HUMAN_TOKEN_ID]
channel2_input_ids_list[n] += copy.deepcopy(system_ids_list[1]) + [DEFAULT_HUMAN_TOKEN_ID]
# prepare audio token to simulate streaming input
audio_meta = item['conversations'][0]['audio']
if 'array' in audio_meta:
assert "sr" in audio_meta
if len(audio_meta['array'].shape) > 1:
assert audio_meta['array'].shape[0] <= 2
audio_meta['array'] = librosa.to_mono(audio_meta['array'])
audio = librosa.resample(audio_meta['array'], orig_sr=audio_meta["sr"], target_sr=AUDIO_SR)
elif "bytes" in audio_meta:
audio, _ = librosa.load(io.BytesIO(audio_meta['bytes']), sr=AUDIO_SR)
elif "file" in audio_meta:
audio, _ = librosa.load(audio_meta['file'], sr=AUDIO_SR)
else:
raise Exception(f"No audio input for task {task_type}")
# get audio token
streaming_user_input_audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
streaming_user_input_audio_tokens = streaming_user_input_audio_tokens.cpu().numpy().tolist()
streaming_user_input_audio_tokens = _wrapper_audio_tokens_autonomous(streaming_user_input_audio_tokens, num_codebooks, codebook_size, AUDIO_MIN_TOKEN_ID)
return [channel1_input_ids_list, channel2_input_ids_list], None, None, streaming_user_input_audio_tokens
def _alpha_audio_input_format(item, tokenizer, dataset_cfg):
task_type = dataset_cfg["task_type"]
num_codebooks = dataset_cfg["num_codebooks"]
codebook_size = dataset_cfg["codebook_size"]
task_token = TASK_TYPE_CONF[task_type]
# Construct system message
system = item["instruction"]
if task_type in ["chat_aiao", "chat_atiao", "chat_tiao"]:
system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN + system
elif task_type == "chat_tts":
system = DEFAULT_TTS_REF_START_TOKEN + DEFAULT_TTS_REF_TOKEN + DEFAULT_TTS_REF_END_TOKEN + system
else:
print (f"task type {task_type} do not use ref.")
system = task_token + system
system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN
# Get ids for system
system_ids = tokenizer.encode(system, add_special_tokens=False)
# Copy into num_codebooks input ids
input_ids_list = []
for _ in range(num_codebooks):
input_ids_list.append(copy.deepcopy(system_ids))
# Construct audio data and mask
audio_data = [np.array([0]*PREPEND_LEN)]
audio_data.append(_get_zero_audio_pad(len(system_ids)))
audio_data_mask = [0] * len(system_ids)
# Assemble conversations
for i, turn in enumerate(item["conversations"]):
if turn['from'] == 'assistant':
# task with audio token as input, prepare audio token
if task_type in ["chat_aiao"]:
if "audio" not in turn:
content = DEFAULT_ASSISTANT_TOKEN
content_ids = tokenizer.encode(content, add_special_tokens=False)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
# preprocess audio_data & audio_data_mask
audio_data.append(_get_zero_audio_pad(len(content_ids)))
audio_data_mask += [0] * len(content_ids)
else:
# Load audio
if 'array' in turn['audio']:
assert "sr" in turn["audio"]
if len(turn["audio"]['array'].shape) > 1:
assert turn["audio"]['array'].shape[0] <= 2
turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
elif "bytes" in turn['audio']:
audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
elif "file" in turn['audio']:
audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
else:
raise Exception(f"No audio input for task {task_type}")
# get audio token
audio_token_num = int(len(audio) / SEG_LEN)
audio_token = [DEFAULT_AUDIO_TOKEN] * audio_token_num
audio_token = ''.join(audio_token)
audio = audio[:SEG_LEN*audio_token_num] # trim audio
content = DEFAULT_ASSISTANT_TOKEN + audio_token + tokenizer.eos_token
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
audio_data.append(_get_zero_audio_pad(1))
audio_data_mask += [0]
audio_data.append(audio)
audio_data_mask += [1] * audio_token_num
audio_data.append(_get_zero_audio_pad(1))
audio_data_mask += [0]
elif task_type in ["chat_tito"]:
if "text" not in turn:
content = DEFAULT_ASSISTANT_TOKEN
content_ids = tokenizer.encode(content, add_special_tokens=False)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
# preprocess audio_data & audio_data_mask
audio_data.append(_get_zero_audio_pad(len(content_ids)))
audio_data_mask += [0] * len(content_ids)
else:
text = turn['text'].strip()
content = DEFAULT_ASSISTANT_TOKEN + text + tokenizer.eos_token
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
audio_data.append(_get_zero_audio_pad(len(content_ids)))
audio_data_mask += [0] * len(content_ids)
else:
raise ValueError (f"[Error] Invalid data type of {task_type}.")
else:
# task with audio token as input, prepare audio token
if task_type in ["chat_aiao"]:
# Load audio
assert "audio" in turn
if 'array' in turn['audio']:
assert "sr" in turn["audio"]
if len(turn["audio"]['array'].shape) > 1:
assert turn["audio"]['array'].shape[0] <= 2
turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
elif "bytes" in turn['audio']:
audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
elif "file" in turn['audio']:
audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
else:
raise Exception(f"No audio input for task {task_type}")
# get audio token
audio_token_num = int(len(audio) / SEG_LEN)
audio_token = [DEFAULT_AUDIO_TOKEN] * audio_token_num
audio_token = ''.join(audio_token)
audio = audio[:SEG_LEN*audio_token_num] # trim audio
content = DEFAULT_HUMAN_TOKEN + audio_token
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
audio_data.append(_get_zero_audio_pad(1))
audio_data_mask += [0]
audio_data.append(audio)
audio_data_mask += [1] * audio_token_num
elif task_type in ["chat_tito"]:
text = turn['text'].strip()
content = DEFAULT_HUMAN_TOKEN + text
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
for n in range(num_codebooks):
input_ids_list[n] += copy.deepcopy(content_ids)
audio_data.append(_get_zero_audio_pad(len(content_ids)))
audio_data_mask += [0] * len(content_ids)
else:
raise ValueError (f"[Error] Invalid data type of {task_type}.")
for n in range(num_codebooks):
input_ids_list[n] = input_ids_list[n][:tokenizer.model_max_length]
audio_data_mask = audio_data_mask[:tokenizer.model_max_length]
audio_data = np.concatenate(audio_data)
audio_data = audio_data[:PREPEND_LEN + tokenizer.model_max_length*SEG_LEN]
return input_ids_list, audio_data, audio_data_mask, None
# Item format
# {
# "instruction": "",
# "conversations": [
# {
# "from": "user" or "assistant",
# "text": "",
# "audio": {
# "array": [],
# "sr": 16000,
# "bytes": "",
# "file": "",
# },
# }
# ],
# }
def voila_input_format(item, tokenizer, tokenizer_voila, dataset_cfg):
if dataset_cfg["input_type"] == "audio":
return _alpha_audio_input_format(item, tokenizer, dataset_cfg)
elif dataset_cfg["input_type"] == "autonomous":
return _token_input_format_autonomous(item, tokenizer, tokenizer_voila, dataset_cfg)
else:
return _token_input_format(item, tokenizer, tokenizer_voila, dataset_cfg)
|