File size: 20,849 Bytes
c0a944c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import io
import copy
import librosa
import numpy as np


AUDIO_TOKEN_FORMAT = "<|{}|>"

DEFAULT_SYSTEM_START_TOKEN = "<SYSTEM>"
DEFAULT_SYSTEM_END_TOKEN   = "</SYSTEM>"

DEFAULT_TTS_REF_START_TOKEN = "<au_tts_ref_start>"
DEFAULT_TTS_REF_END_TOKEN   = "<au_tts_ref_end>"
DEFAULT_TTS_REF_TOKEN = "<au_tts_ref>"

DEFAULT_CHAT_REF_START_TOKEN = "<au_chat_ref_start>"
DEFAULT_CHAT_REF_END_TOKEN   = "<au_chat_ref_end>"
DEFAULT_CHAT_REF_TOKEN = "<au_chat_ref>"

DEFAULT_HUMAN_TOKEN = "<|HUMAN|>"
DEFAULT_ASSISTANT_TOKEN = "<|VOILA|>"

DEFAULT_AUDIO_TOKEN = "<au_token>"

# ===================================
# task special token
# -----------------------------------
TASK_ASR_TOKEN = "<asr>"
TASK_TTS_TOKEN = "<tts>"
TASK_CHAT_TOKEN = "<chat>"
TASK_STREAM_CHAT_TOKEN = "<stream_chat>"

TASK_ASR_TEXT_OUTPUT = "<asr_text_output>"
TASK_TTS_AUDIO_OUTPUT = "<tts_audio_output>"
TASK_CHAT_TEXT_OUTPUT = "<chat_text_output>"
TASK_CHAT_AUDIO_OUTPUT = "<chat_audio_output>"

CHAT_AUDIO_TEXT_SPLIT_TOKEN = "<chat_audio_text_split>"
# ===================================

PREPEND_LEN = 80
SEG_LEN = 640
AUDIO_SR = 16000

TASK_TYPE_CONF = {
    "chat_asr": TASK_ASR_TOKEN + TASK_ASR_TEXT_OUTPUT,
    "chat_tts": TASK_TTS_TOKEN + TASK_TTS_AUDIO_OUTPUT,
    "chat_tito": TASK_CHAT_TOKEN + TASK_CHAT_TEXT_OUTPUT,
    "chat_tiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
    "chat_aiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
    "chat_atiao": TASK_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
    "chat_aiao_auto": TASK_STREAM_CHAT_TOKEN + TASK_CHAT_AUDIO_OUTPUT,
}


def _get_zero_audio_pad(token_num):
    return np.zeros(SEG_LEN*token_num)

def _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size):
    ret_audio_tokens = []
    for n in range(num_codebooks):
        audio_token = audio_tokens[n]
        ret_audio_tokens.append(''.join([AUDIO_TOKEN_FORMAT.format(au + n*codebook_size) if isinstance(au, int) else au for au in audio_token]))
    return ret_audio_tokens

def _wrapper_audio_tokens_autonomous(audio_tokens, num_codebooks, codebook_size, audio_token_min_id):
    ret_audio_tokens = []
    for n in range(num_codebooks):
        audio_token = audio_tokens[n]
        ret_audio_tokens.append([(au + n*codebook_size + audio_token_min_id) for au in audio_token])
    return ret_audio_tokens

# Item format
# {
#   "instruction": "",
#   "conversations": [
#     {
#       "from": "user" or "assistant",
#       "text": "",
#       "audio": {
#         "array": [],
#         "sr": 16000,
#         "bytes": "",
#         "file": "",
#       },
#     }
#   ],
# }
def _token_input_format(item, tokenizer, tokenizer_voila, dataset_cfg):
    task_type = dataset_cfg["task_type"]
    num_codebooks = dataset_cfg["num_codebooks"]
    codebook_size = dataset_cfg["codebook_size"]

    task_token = TASK_TYPE_CONF[task_type]

    # Construct system message
    system = item["instruction"]
    if task_type in ["chat_aiao", "chat_atiao", "chat_tiao"]:
        system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN + system
    elif task_type == "chat_tts":
        system = DEFAULT_TTS_REF_START_TOKEN + DEFAULT_TTS_REF_TOKEN + DEFAULT_TTS_REF_END_TOKEN + system
    else:
        print (f"task type {task_type} do not use ref.")
    system = task_token + system
    system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN

    # Get ids for system
    system_ids = tokenizer.encode(system, add_special_tokens=False)

    # Copy into num_codebooks input ids
    input_ids_list = []
    for _ in range(num_codebooks):
        input_ids_list.append(copy.deepcopy(system_ids))

    # Assemble conversations
    for i, turn in enumerate(item["conversations"]):
        if turn['from'] == 'assistant':
            # task with audio token as input, prepare audio token
            if task_type in ["chat_aiao", "chat_tts"]:
                if "audio" not in turn:
                    content = DEFAULT_ASSISTANT_TOKEN
                    content_ids = tokenizer.encode(content, add_special_tokens=False)
                    for n in range(num_codebooks):
                        input_ids_list[n] += copy.deepcopy(content_ids)
                else:
                    # Load audio
                    if 'array' in turn['audio']:
                        assert "sr" in turn["audio"]
                        if len(turn["audio"]['array'].shape) > 1:
                            assert turn["audio"]['array'].shape[0] <= 2
                            turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
                        audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
                    elif "bytes" in turn['audio']:
                        audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
                    elif "file" in turn['audio']:
                        audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
                    else:
                        raise Exception(f"No audio input for task {task_type}")

                    # get audio token
                    audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
                    audio_tokens = audio_tokens.cpu().numpy().tolist()
                    audio_tokens = _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size)

                    for n in range(num_codebooks):
                        content = DEFAULT_ASSISTANT_TOKEN + audio_tokens[n] + tokenizer.eos_token
                        content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
                                                max_length=tokenizer.model_max_length)
                        input_ids_list[n] += content_ids

            elif task_type in ["chat_tito", "chat_asr"]:
                if "text" not in turn:
                    content = DEFAULT_ASSISTANT_TOKEN
                    content_ids = tokenizer.encode(content, add_special_tokens=False)
                    for n in range(num_codebooks):
                        input_ids_list[n] += copy.deepcopy(content_ids)
                else:
                    text = turn['text'].strip()
                    content = DEFAULT_ASSISTANT_TOKEN + text + tokenizer.eos_token
                    content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
                                                    max_length=tokenizer.model_max_length)
                    for n in range(num_codebooks):
                        input_ids_list[n] += copy.deepcopy(content_ids)
            else:
                raise ValueError (f"[Error] Invalid data type of {task_type}.")
        else:
            # task with audio token as input, prepare audio token
            if task_type in ["chat_aiao", "chat_asr"]:
                # Load audio
                assert "audio" in turn
                if 'array' in turn['audio']:
                    assert "sr" in turn["audio"]
                    if len(turn["audio"]['array'].shape) > 1:
                        assert turn["audio"]['array'].shape[0] <= 2
                        turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
                    audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
                elif "bytes" in turn['audio']:
                    audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
                elif "file" in turn['audio']:
                    audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
                else:
                    raise Exception(f"No audio input for task {task_type}")

                # get audio token
                audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
                audio_tokens = audio_tokens.cpu().numpy().tolist()
                audio_tokens = _wrapper_audio_tokens(audio_tokens, num_codebooks, codebook_size)

                for n in range(num_codebooks):
                    content = DEFAULT_HUMAN_TOKEN + audio_tokens[n]
                    content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
                                            max_length=tokenizer.model_max_length)
                    input_ids_list[n] += copy.deepcopy(content_ids)
            elif task_type in ["chat_tito", "chat_tts"]:
                text = turn['text'].strip()
                content = DEFAULT_HUMAN_TOKEN + text
                content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
                                                max_length=tokenizer.model_max_length)
                for n in range(num_codebooks):
                    input_ids_list[n] += copy.deepcopy(content_ids)
            else:
                raise ValueError (f"[Error] Invalid data type of {task_type}.")

    for n in range(num_codebooks):
        input_ids_list[n] = input_ids_list[n][:tokenizer.model_max_length]

    return input_ids_list, None, None, None

def _token_input_format_autonomous(item, tokenizer, tokenizer_voila, dataset_cfg):
    task_type = dataset_cfg["task_type"]
    num_codebooks = dataset_cfg["num_codebooks"]
    codebook_size = dataset_cfg["codebook_size"]
    assert task_type == "chat_aiao_auto", f"only support chat_aiao_auto, {task_type} is invalid"

    DEFAULT_HUMAN_TOKEN_ID = tokenizer.convert_tokens_to_ids(DEFAULT_HUMAN_TOKEN)
    assert isinstance(DEFAULT_HUMAN_TOKEN_ID, int), "DEFAULT_HUMAN_TOKEN_ID should be an integer"
    AUDIO_MIN_TOKEN_ID = tokenizer.convert_tokens_to_ids(AUDIO_TOKEN_FORMAT.format(0))
    assert isinstance(AUDIO_MIN_TOKEN_ID, int), "AUDIO_MIN_TOKEN_ID should be an integer"

    task_token = TASK_TYPE_CONF[task_type]

    # Construct system message
    system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN
    system = task_token + system
    system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN

    # Get ids for system
    system_ids_list = [[], []]
    system_ids = tokenizer.encode(system, add_special_tokens=False)

    # Insert instruction tokens into system prompt tokens
    instruction = item["instruction"]
    if instruction != "":
        instruction_ids = tokenizer.encode(instruction, add_special_tokens=False)
    else:
        instruction_ids = []

    system_ids_list[0] = system_ids[:-1] + instruction_ids + system_ids[-1:]
    system_ids_list[1] = system_ids[:-1] + instruction_ids + system_ids[-1:]

    # Copy into num_codebooks input ids
    channel1_input_ids_list = [[] for _ in range(num_codebooks)]
    channel2_input_ids_list = [[] for _ in range(num_codebooks)]
    for n in range(num_codebooks):
        channel1_input_ids_list[n] += copy.deepcopy(system_ids_list[0]) + [DEFAULT_HUMAN_TOKEN_ID]
        channel2_input_ids_list[n] += copy.deepcopy(system_ids_list[1]) + [DEFAULT_HUMAN_TOKEN_ID]

    # prepare audio token to simulate streaming input
    audio_meta = item['conversations'][0]['audio']
    if 'array' in audio_meta:
        assert "sr" in audio_meta
        if len(audio_meta['array'].shape) > 1:
            assert audio_meta['array'].shape[0] <= 2
            audio_meta['array'] = librosa.to_mono(audio_meta['array'])
        audio = librosa.resample(audio_meta['array'], orig_sr=audio_meta["sr"], target_sr=AUDIO_SR)
    elif "bytes" in audio_meta:
        audio, _ = librosa.load(io.BytesIO(audio_meta['bytes']), sr=AUDIO_SR)
    elif "file" in audio_meta:
        audio, _ = librosa.load(audio_meta['file'], sr=AUDIO_SR)
    else:
        raise Exception(f"No audio input for task {task_type}")

    # get audio token
    streaming_user_input_audio_tokens = tokenizer_voila.encode(audio, sr=AUDIO_SR)
    streaming_user_input_audio_tokens = streaming_user_input_audio_tokens.cpu().numpy().tolist()
    streaming_user_input_audio_tokens = _wrapper_audio_tokens_autonomous(streaming_user_input_audio_tokens, num_codebooks, codebook_size, AUDIO_MIN_TOKEN_ID)

    return [channel1_input_ids_list, channel2_input_ids_list], None, None, streaming_user_input_audio_tokens

def _alpha_audio_input_format(item, tokenizer, dataset_cfg):
    task_type = dataset_cfg["task_type"]
    num_codebooks = dataset_cfg["num_codebooks"]
    codebook_size = dataset_cfg["codebook_size"]

    task_token = TASK_TYPE_CONF[task_type]

    # Construct system message
    system = item["instruction"]
    if task_type in ["chat_aiao", "chat_atiao", "chat_tiao"]:
        system = DEFAULT_CHAT_REF_START_TOKEN + DEFAULT_CHAT_REF_TOKEN + DEFAULT_CHAT_REF_END_TOKEN + system
    elif task_type == "chat_tts":
        system = DEFAULT_TTS_REF_START_TOKEN + DEFAULT_TTS_REF_TOKEN + DEFAULT_TTS_REF_END_TOKEN + system
    else:
        print (f"task type {task_type} do not use ref.")
    system = task_token + system
    system = DEFAULT_SYSTEM_START_TOKEN + system + DEFAULT_SYSTEM_END_TOKEN

    # Get ids for system
    system_ids = tokenizer.encode(system, add_special_tokens=False)

    # Copy into num_codebooks input ids
    input_ids_list = []
    for _ in range(num_codebooks):
        input_ids_list.append(copy.deepcopy(system_ids))

    # Construct audio data and mask
    audio_data = [np.array([0]*PREPEND_LEN)]
    audio_data.append(_get_zero_audio_pad(len(system_ids)))
    audio_data_mask = [0] * len(system_ids)

    # Assemble conversations
    for i, turn in enumerate(item["conversations"]):
        if turn['from'] == 'assistant':
            # task with audio token as input, prepare audio token
            if task_type in ["chat_aiao"]:
                if "audio" not in turn:
                    content = DEFAULT_ASSISTANT_TOKEN
                    content_ids = tokenizer.encode(content, add_special_tokens=False)
                    for n in range(num_codebooks):
                        input_ids_list[n] += copy.deepcopy(content_ids)
                    # preprocess audio_data & audio_data_mask
                    audio_data.append(_get_zero_audio_pad(len(content_ids)))
                    audio_data_mask += [0] * len(content_ids)
                else:
                    # Load audio
                    if 'array' in turn['audio']:
                        assert "sr" in turn["audio"]
                        if len(turn["audio"]['array'].shape) > 1:
                            assert turn["audio"]['array'].shape[0] <= 2
                            turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
                        audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
                    elif "bytes" in turn['audio']:
                        audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
                    elif "file" in turn['audio']:
                        audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
                    else:
                        raise Exception(f"No audio input for task {task_type}")

                    # get audio token
                    audio_token_num = int(len(audio) / SEG_LEN)
                    audio_token = [DEFAULT_AUDIO_TOKEN] * audio_token_num
                    audio_token = ''.join(audio_token)
                    audio = audio[:SEG_LEN*audio_token_num]             # trim audio

                    content = DEFAULT_ASSISTANT_TOKEN + audio_token + tokenizer.eos_token
                    content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
                                                max_length=tokenizer.model_max_length)
                    for n in range(num_codebooks):
                        input_ids_list[n] += copy.deepcopy(content_ids)

                    audio_data.append(_get_zero_audio_pad(1))
                    audio_data_mask += [0]
                    audio_data.append(audio)
                    audio_data_mask += [1] * audio_token_num
                    audio_data.append(_get_zero_audio_pad(1))
                    audio_data_mask += [0]
            elif task_type in ["chat_tito"]:
                if "text" not in turn:
                    content = DEFAULT_ASSISTANT_TOKEN
                    content_ids = tokenizer.encode(content, add_special_tokens=False)
                    for n in range(num_codebooks):
                        input_ids_list[n] += copy.deepcopy(content_ids)
                    # preprocess audio_data & audio_data_mask
                    audio_data.append(_get_zero_audio_pad(len(content_ids)))
                    audio_data_mask += [0] * len(content_ids)
                else:
                    text = turn['text'].strip()
                    content = DEFAULT_ASSISTANT_TOKEN + text + tokenizer.eos_token
                    content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
                                                    max_length=tokenizer.model_max_length)
                    for n in range(num_codebooks):
                        input_ids_list[n] += copy.deepcopy(content_ids)
                    audio_data.append(_get_zero_audio_pad(len(content_ids)))
                    audio_data_mask += [0] * len(content_ids)
            else:
                raise ValueError (f"[Error] Invalid data type of {task_type}.")
        else:
            # task with audio token as input, prepare audio token
            if task_type in ["chat_aiao"]:
                # Load audio
                assert "audio" in turn
                if 'array' in turn['audio']:
                    assert "sr" in turn["audio"]
                    if len(turn["audio"]['array'].shape) > 1:
                        assert turn["audio"]['array'].shape[0] <= 2
                        turn["audio"]['array'] = librosa.to_mono(turn["audio"]['array'])
                    audio = librosa.resample(turn["audio"]['array'], orig_sr=turn["audio"]["sr"], target_sr=AUDIO_SR)
                elif "bytes" in turn['audio']:
                    audio, _ = librosa.load(io.BytesIO(turn["audio"]['bytes']), sr=AUDIO_SR)
                elif "file" in turn['audio']:
                    audio, _ = librosa.load(turn["audio"]['file'], sr=AUDIO_SR)
                else:
                    raise Exception(f"No audio input for task {task_type}")

                # get audio token
                audio_token_num = int(len(audio) / SEG_LEN)
                audio_token = [DEFAULT_AUDIO_TOKEN] * audio_token_num
                audio_token = ''.join(audio_token)
                audio = audio[:SEG_LEN*audio_token_num]             # trim audio

                content = DEFAULT_HUMAN_TOKEN + audio_token
                content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
                                            max_length=tokenizer.model_max_length)
                for n in range(num_codebooks):
                    input_ids_list[n] += copy.deepcopy(content_ids)

                audio_data.append(_get_zero_audio_pad(1))
                audio_data_mask += [0]
                audio_data.append(audio)
                audio_data_mask += [1] * audio_token_num
            elif task_type in ["chat_tito"]:
                text = turn['text'].strip()
                content = DEFAULT_HUMAN_TOKEN + text
                content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
                                                max_length=tokenizer.model_max_length)
                for n in range(num_codebooks):
                    input_ids_list[n] += copy.deepcopy(content_ids)
                audio_data.append(_get_zero_audio_pad(len(content_ids)))
                audio_data_mask += [0] * len(content_ids)
            else:
                raise ValueError (f"[Error] Invalid data type of {task_type}.")

    for n in range(num_codebooks):
        input_ids_list[n] = input_ids_list[n][:tokenizer.model_max_length]
    audio_data_mask = audio_data_mask[:tokenizer.model_max_length]
    audio_data = np.concatenate(audio_data)
    audio_data = audio_data[:PREPEND_LEN + tokenizer.model_max_length*SEG_LEN]

    return input_ids_list, audio_data, audio_data_mask, None

# Item format
# {
#   "instruction": "",
#   "conversations": [
#     {
#       "from": "user" or "assistant",
#       "text": "",
#       "audio": {
#         "array": [],
#         "sr": 16000,
#         "bytes": "",
#         "file": "",
#       },
#     }
#   ],
# }
def voila_input_format(item, tokenizer, tokenizer_voila, dataset_cfg):
    if dataset_cfg["input_type"] == "audio":
        return _alpha_audio_input_format(item, tokenizer, dataset_cfg)
    elif dataset_cfg["input_type"] == "autonomous":
        return _token_input_format_autonomous(item, tokenizer, tokenizer_voila, dataset_cfg)
    else:
        return _token_input_format(item, tokenizer, tokenizer_voila, dataset_cfg)