Spaces:
Sleeping
Sleeping
import torch | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
import gradio as gr | |
# Load model and processor | |
device = torch.device("cpu") | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device) | |
# Captioning function with fallback logic | |
def caption_image(image): | |
try: | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
output = model.generate(**inputs, max_length=30) | |
caption = processor.tokenizer.decode(output[0], skip_special_tokens=True) | |
return caption.capitalize() | |
except Exception as e: | |
return f"⚠️ Error: {str(e)[:100]}" | |
# Gradio UI | |
gr.Interface( | |
fn=caption_image, | |
inputs=gr.Image(type="pil", label="Upload Image"), | |
outputs=gr.Textbox(label="Generated Caption"), | |
title="🖼️ BLIP Image Caption Generator", | |
description="Fast, accurate image captioning using BLIP. No API keys. CPU-friendly. Instant output.", | |
allow_flagging="never" | |
).launch() | |