Spaces:
Sleeping
Sleeping
File size: 1,118 Bytes
f56bf6b 5013910 f56bf6b 5013910 f56bf6b 5013910 f56bf6b 5013910 f56bf6b 5013910 f56bf6b 5013910 f56bf6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import torch
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
# Load model and processor
device = torch.device("cpu")
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
# Captioning function with fallback logic
def caption_image(image):
try:
inputs = processor(images=image, return_tensors="pt").to(device)
output = model.generate(**inputs, max_length=30)
caption = processor.tokenizer.decode(output[0], skip_special_tokens=True)
return caption.capitalize()
except Exception as e:
return f"⚠️ Error: {str(e)[:100]}"
# Gradio UI
gr.Interface(
fn=caption_image,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=gr.Textbox(label="Generated Caption"),
title="🖼️ BLIP Image Caption Generator",
description="Fast, accurate image captioning using BLIP. No API keys. CPU-friendly. Instant output.",
allow_flagging="never"
).launch()
|