Spaces:
Runtime error
Runtime error
import os | |
import pdfplumber | |
from PIL import Image | |
import pytesseract | |
import numpy as np | |
from flask import Flask, request, jsonify | |
from flask_cors import CORS | |
import transformers | |
from transformers import PegasusForConditionalGeneration, PegasusTokenizer, BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments | |
from datasets import load_dataset, concatenate_datasets | |
import torch | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
app = Flask(__name__) | |
CORS(app) | |
UPLOAD_FOLDER = os.path.join(os.getcwd(), 'uploads') | |
PEGASUS_MODEL_DIR = '/app/fine_tuned_pegasus' | |
BERT_MODEL_DIR = '/app/fine_tuned_bert' | |
LEGALBERT_MODEL_DIR = '/app/fine_tuned_legalbert' | |
MAX_FILE_SIZE = 100 * 1024 * 1024 | |
if not os.path.exists(UPLOAD_FOLDER): | |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) | |
transformers.logging.set_verbosity_error() | |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" | |
# Pegasus Fine-Tuning | |
def load_or_finetune_pegasus(): | |
if os.path.exists(PEGASUS_MODEL_DIR): | |
print("Loading fine-tuned Pegasus model...") | |
tokenizer = PegasusTokenizer.from_pretrained(PEGASUS_MODEL_DIR) | |
model = PegasusForConditionalGeneration.from_pretrained(PEGASUS_MODEL_DIR) | |
else: | |
print("Fine-tuning Pegasus on CNN/Daily Mail and XSUM...") | |
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum") | |
model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum") | |
cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]").rename_column("article", "text").rename_column("highlights", "summary") | |
xsum = load_dataset("xsum", split="train[:5000]", trust_remote_code=True).rename_column("document", "text") | |
combined_dataset = concatenate_datasets([cnn_dm, xsum]) | |
def preprocess_function(examples): | |
inputs = tokenizer(examples["text"], max_length=512, truncation=True, padding="max_length", return_tensors="pt") | |
targets = tokenizer(examples["summary"], max_length=400, truncation=True, padding="max_length", return_tensors="pt") | |
inputs["labels"] = targets["input_ids"] | |
return inputs | |
tokenized_dataset = combined_dataset.map(preprocess_function, batched=True) | |
train_dataset = tokenized_dataset.select(range(8000)) | |
eval_dataset = tokenized_dataset.select(range(8000, 10000)) | |
training_args = TrainingArguments( | |
output_dir="/app/pegasus_finetune", | |
num_train_epochs=3, | |
per_device_train_batch_size=1, | |
per_device_eval_batch_size=1, | |
warmup_steps=500, | |
weight_decay=0.01, | |
logging_dir="./logs", | |
logging_steps=10, | |
eval_strategy="epoch", | |
save_strategy="epoch", | |
load_best_model_at_end=True, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
) | |
trainer.train() | |
trainer.save_model(PEGASUS_MODEL_DIR) | |
tokenizer.save_pretrained(PEGASUS_MODEL_DIR) | |
print(f"Fine-tuned Pegasus saved to {PEGASUS_MODEL_DIR}") | |
return tokenizer, model | |
# BERT Fine-Tuning | |
def load_or_finetune_bert(): | |
if os.path.exists(BERT_MODEL_DIR): | |
print("Loading fine-tuned BERT model...") | |
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_DIR) | |
model = BertForSequenceClassification.from_pretrained(BERT_MODEL_DIR, num_labels=2) | |
else: | |
print("Fine-tuning BERT on CNN/Daily Mail for extractive summarization...") | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2) | |
cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]") | |
def preprocess_for_extractive(examples): | |
sentences = [] | |
labels = [] | |
for article, highlights in zip(examples["article"], examples["highlights"]): | |
article_sents = article.split(". ") | |
highlight_sents = highlights.split(". ") | |
for sent in article_sents: | |
if sent.strip(): | |
is_summary = any(sent.strip() in h for h in highlight_sents) | |
sentences.append(sent) | |
labels.append(1 if is_summary else 0) | |
return {"sentence": sentences, "label": labels} | |
dataset = cnn_dm.map(preprocess_for_extractive, batched=True, remove_columns=["article", "highlights", "id"]) | |
tokenized_dataset = dataset.map( | |
lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"), | |
batched=True | |
) | |
tokenized_dataset = tokenized_dataset.remove_columns(["sentence"]) | |
train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)))) | |
eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset))) | |
training_args = TrainingArguments( | |
output_dir="/app/bert_finetune", | |
num_train_epochs=3, | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
warmup_steps=500, | |
weight_decay=0.01, | |
logging_dir="./logs", | |
logging_steps=10, | |
eval_strategy="epoch", | |
save_strategy="epoch", | |
load_best_model_at_end=True, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
) | |
trainer.train() | |
trainer.save_model(BERT_MODEL_DIR) | |
tokenizer.save_pretrained(BERT_MODEL_DIR) | |
print(f"Fine-tuned BERT saved to {BERT_MODEL_DIR}") | |
return tokenizer, model | |
# LegalBERT Fine-Tuning | |
def load_or_finetune_legalbert(): | |
if os.path.exists(LEGALBERT_MODEL_DIR): | |
print("Loading fine-tuned LegalBERT model...") | |
tokenizer = BertTokenizer.from_pretrained(LEGALBERT_MODEL_DIR) | |
model = BertForSequenceClassification.from_pretrained(LEGALBERT_MODEL_DIR, num_labels=2) | |
else: | |
print("Fine-tuning LegalBERT on Billsum for extractive summarization...") | |
tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased") | |
model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased", num_labels=2) | |
billsum = load_dataset("billsum", split="train[:5000]") | |
def preprocess_for_extractive(examples): | |
sentences = [] | |
labels = [] | |
for text, summary in zip(examples["text"], examples["summary"]): | |
text_sents = text.split(". ") | |
summary_sents = summary.split(". ") | |
for sent in text_sents: | |
if sent.strip(): | |
is_summary = any(sent.strip() in s for s in summary_sents) | |
sentences.append(sent) | |
labels.append(1 if is_summary else 0) | |
return {"sentence": sentences, "label": labels} | |
dataset = billsum.map(preprocess_for_extractive, batched=True, remove_columns=["text", "summary", "title"]) | |
tokenized_dataset = dataset.map( | |
lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"), | |
batched=True | |
) | |
tokenized_dataset = tokenized_dataset.remove_columns(["sentence"]) | |
train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)))) | |
eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset))) | |
training_args = TrainingArguments( | |
output_dir="/app/legalbert_finetune", | |
num_train_epochs=3, | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
warmup_steps=500, | |
weight_decay=0.01, | |
logging_dir="./logs", | |
logging_steps=10, | |
eval_strategy="epoch", | |
save_strategy="epoch", | |
load_best_model_at_end=True, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
) | |
trainer.train() | |
trainer.save_model(LEGALBERT_MODEL_DIR) | |
tokenizer.save_pretrained(LEGALBERT_MODEL_DIR) | |
print(f"Fine-tuned LegalBERT saved to {LEGALBERT_MODEL_DIR}") | |
return tokenizer, model | |
# Load models | |
pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus() | |
bert_tokenizer, bert_model = load_or_finetune_bert() | |
legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert() | |
def extract_text_from_pdf(file_path): | |
text = "" | |
with pdfplumber.open(file_path) as pdf: | |
for page in pdf.pages: | |
text += page.extract_text() or "" | |
return text | |
def extract_text_from_image(file_path): | |
image = Image.open(file_path) | |
text = pytesseract.image_to_string(image) | |
return text | |
def choose_model(text): | |
legal_keywords = ["court", "legal", "law", "judgment", "contract", "statute", "case"] | |
tfidf = TfidfVectorizer(vocabulary=legal_keywords) | |
tfidf_matrix = tfidf.fit_transform([text.lower()]) | |
score = np.sum(tfidf_matrix.toarray()) | |
if score > 0.1: | |
return "legalbert" | |
elif len(text.split()) > 50: | |
return "pegasus" | |
else: | |
return "bert" | |
def summarize_with_pegasus(text): | |
inputs = pegasus_tokenizer(text, truncation=True, padding="longest", return_tensors="pt", max_length=512) | |
summary_ids = pegasus_model.generate( | |
inputs["input_ids"], | |
max_length=400, min_length=80, length_penalty=1.5, num_beams=4 | |
) | |
return pegasus_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
def summarize_with_bert(text): | |
sentences = text.split(". ") | |
if len(sentences) < 6: | |
return text | |
inputs = bert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
with torch.no_grad(): | |
outputs = bert_model(**inputs) | |
logits = outputs.logits | |
probs = torch.softmax(logits, dim=1)[:, 1] | |
key_sentence_idx = probs.argsort(descending=True)[:5] | |
return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()]) | |
def summarize_with_legalbert(text): | |
sentences = text.split(". ") | |
if len(sentences) < 6: | |
return text | |
inputs = legalbert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
with torch.no_grad(): | |
outputs = legalbert_model(**inputs) | |
logits = outputs.logits | |
probs = torch.softmax(logits, dim=1)[:, 1] | |
key_sentence_idx = probs.argsort(descending=True)[:5] | |
return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()]) | |
def summarize_document(): | |
if 'file' not in request.files: | |
return jsonify({"error": "No file uploaded"}), 400 | |
file = request.files['file'] | |
filename = file.filename | |
file.seek(0, os.SEEK_END) | |
file_size = file.tell() | |
if file_size > MAX_FILE_SIZE: | |
return jsonify({"error": f"File size exceeds {MAX_FILE_SIZE // (1024 * 1024)} MB"}), 413 | |
file.seek(0) | |
file_path = os.path.join(UPLOAD_FOLDER, filename) | |
try: | |
file.save(file_path) | |
except Exception as e: | |
return jsonify({"error": f"Failed to save file: {str(e)}"}), 500 | |
try: | |
if filename.endswith('.pdf'): | |
text = extract_text_from_pdf(file_path) | |
elif filename.endswith(('.png', '.jpeg', '.jpg')): | |
text = extract_text_from_image(file_path) | |
else: | |
os.remove(file_path) | |
return jsonify({"error": "Unsupported file format."}), 400 | |
except Exception as e: | |
os.remove(file_path) | |
return jsonify({"error": f"Text extraction failed: {str(e)}"}), 500 | |
if not text.strip(): | |
os.remove(file_path) | |
return jsonify({"error": "No text extracted"}), 400 | |
try: | |
model = choose_model(text) | |
if model == "pegasus": | |
summary = summarize_with_pegasus(text) | |
elif model == "bert": | |
summary = summarize_with_bert(text) | |
elif model == "legalbert": | |
summary = summarize_with_legalbert(text) | |
except Exception as e: | |
os.remove(file_path) | |
return jsonify({"error": f"Summarization failed: {str(e)}"}), 500 | |
os.remove(file_path) | |
return jsonify({"model_used": model, "summary": summary}) | |
if __name__ == '__main__': | |
port = int(os.environ.get("PORT", 5000)) | |
app.run(debug=False, host='0.0.0.0', port=port) |