Spaces:
Runtime error
Runtime error
File size: 13,001 Bytes
d589455 1c64c13 d589455 0013019 d589455 056a594 0013019 d589455 0013019 d589455 58013a0 d589455 58013a0 d589455 056a594 d589455 056a594 d589455 056a594 d589455 0013019 d589455 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
import pdfplumber
from PIL import Image
import pytesseract
import numpy as np
from flask import Flask, request, jsonify
from flask_cors import CORS
import transformers
from transformers import PegasusForConditionalGeneration, PegasusTokenizer, BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset, concatenate_datasets
import torch
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
app = Flask(__name__)
CORS(app)
UPLOAD_FOLDER = os.path.join(os.getcwd(), 'uploads')
PEGASUS_MODEL_DIR = '/app/fine_tuned_pegasus'
BERT_MODEL_DIR = '/app/fine_tuned_bert'
LEGALBERT_MODEL_DIR = '/app/fine_tuned_legalbert'
MAX_FILE_SIZE = 100 * 1024 * 1024
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
transformers.logging.set_verbosity_error()
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
# Pegasus Fine-Tuning
def load_or_finetune_pegasus():
if os.path.exists(PEGASUS_MODEL_DIR):
print("Loading fine-tuned Pegasus model...")
tokenizer = PegasusTokenizer.from_pretrained(PEGASUS_MODEL_DIR)
model = PegasusForConditionalGeneration.from_pretrained(PEGASUS_MODEL_DIR)
else:
print("Fine-tuning Pegasus on CNN/Daily Mail and XSUM...")
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]").rename_column("article", "text").rename_column("highlights", "summary")
xsum = load_dataset("xsum", split="train[:5000]", trust_remote_code=True).rename_column("document", "text")
combined_dataset = concatenate_datasets([cnn_dm, xsum])
def preprocess_function(examples):
inputs = tokenizer(examples["text"], max_length=512, truncation=True, padding="max_length", return_tensors="pt")
targets = tokenizer(examples["summary"], max_length=400, truncation=True, padding="max_length", return_tensors="pt")
inputs["labels"] = targets["input_ids"]
return inputs
tokenized_dataset = combined_dataset.map(preprocess_function, batched=True)
train_dataset = tokenized_dataset.select(range(8000))
eval_dataset = tokenized_dataset.select(range(8000, 10000))
training_args = TrainingArguments(
output_dir="/app/pegasus_finetune",
num_train_epochs=3,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
trainer.save_model(PEGASUS_MODEL_DIR)
tokenizer.save_pretrained(PEGASUS_MODEL_DIR)
print(f"Fine-tuned Pegasus saved to {PEGASUS_MODEL_DIR}")
return tokenizer, model
# BERT Fine-Tuning
def load_or_finetune_bert():
if os.path.exists(BERT_MODEL_DIR):
print("Loading fine-tuned BERT model...")
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_DIR)
model = BertForSequenceClassification.from_pretrained(BERT_MODEL_DIR, num_labels=2)
else:
print("Fine-tuning BERT on CNN/Daily Mail for extractive summarization...")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")
def preprocess_for_extractive(examples):
sentences = []
labels = []
for article, highlights in zip(examples["article"], examples["highlights"]):
article_sents = article.split(". ")
highlight_sents = highlights.split(". ")
for sent in article_sents:
if sent.strip():
is_summary = any(sent.strip() in h for h in highlight_sents)
sentences.append(sent)
labels.append(1 if is_summary else 0)
return {"sentence": sentences, "label": labels}
dataset = cnn_dm.map(preprocess_for_extractive, batched=True, remove_columns=["article", "highlights", "id"])
tokenized_dataset = dataset.map(
lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
batched=True
)
tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
training_args = TrainingArguments(
output_dir="/app/bert_finetune",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
trainer.save_model(BERT_MODEL_DIR)
tokenizer.save_pretrained(BERT_MODEL_DIR)
print(f"Fine-tuned BERT saved to {BERT_MODEL_DIR}")
return tokenizer, model
# LegalBERT Fine-Tuning
def load_or_finetune_legalbert():
if os.path.exists(LEGALBERT_MODEL_DIR):
print("Loading fine-tuned LegalBERT model...")
tokenizer = BertTokenizer.from_pretrained(LEGALBERT_MODEL_DIR)
model = BertForSequenceClassification.from_pretrained(LEGALBERT_MODEL_DIR, num_labels=2)
else:
print("Fine-tuning LegalBERT on Billsum for extractive summarization...")
tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased", num_labels=2)
billsum = load_dataset("billsum", split="train[:5000]")
def preprocess_for_extractive(examples):
sentences = []
labels = []
for text, summary in zip(examples["text"], examples["summary"]):
text_sents = text.split(". ")
summary_sents = summary.split(". ")
for sent in text_sents:
if sent.strip():
is_summary = any(sent.strip() in s for s in summary_sents)
sentences.append(sent)
labels.append(1 if is_summary else 0)
return {"sentence": sentences, "label": labels}
dataset = billsum.map(preprocess_for_extractive, batched=True, remove_columns=["text", "summary", "title"])
tokenized_dataset = dataset.map(
lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
batched=True
)
tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
training_args = TrainingArguments(
output_dir="/app/legalbert_finetune",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
trainer.save_model(LEGALBERT_MODEL_DIR)
tokenizer.save_pretrained(LEGALBERT_MODEL_DIR)
print(f"Fine-tuned LegalBERT saved to {LEGALBERT_MODEL_DIR}")
return tokenizer, model
# Load models
pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus()
bert_tokenizer, bert_model = load_or_finetune_bert()
legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert()
def extract_text_from_pdf(file_path):
text = ""
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text += page.extract_text() or ""
return text
def extract_text_from_image(file_path):
image = Image.open(file_path)
text = pytesseract.image_to_string(image)
return text
def choose_model(text):
legal_keywords = ["court", "legal", "law", "judgment", "contract", "statute", "case"]
tfidf = TfidfVectorizer(vocabulary=legal_keywords)
tfidf_matrix = tfidf.fit_transform([text.lower()])
score = np.sum(tfidf_matrix.toarray())
if score > 0.1:
return "legalbert"
elif len(text.split()) > 50:
return "pegasus"
else:
return "bert"
def summarize_with_pegasus(text):
inputs = pegasus_tokenizer(text, truncation=True, padding="longest", return_tensors="pt", max_length=512)
summary_ids = pegasus_model.generate(
inputs["input_ids"],
max_length=400, min_length=80, length_penalty=1.5, num_beams=4
)
return pegasus_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def summarize_with_bert(text):
sentences = text.split(". ")
if len(sentences) < 6:
return text
inputs = bert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = bert_model(**inputs)
logits = outputs.logits
probs = torch.softmax(logits, dim=1)[:, 1]
key_sentence_idx = probs.argsort(descending=True)[:5]
return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])
def summarize_with_legalbert(text):
sentences = text.split(". ")
if len(sentences) < 6:
return text
inputs = legalbert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = legalbert_model(**inputs)
logits = outputs.logits
probs = torch.softmax(logits, dim=1)[:, 1]
key_sentence_idx = probs.argsort(descending=True)[:5]
return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])
@app.route('/summarize', methods=['POST'])
def summarize_document():
if 'file' not in request.files:
return jsonify({"error": "No file uploaded"}), 400
file = request.files['file']
filename = file.filename
file.seek(0, os.SEEK_END)
file_size = file.tell()
if file_size > MAX_FILE_SIZE:
return jsonify({"error": f"File size exceeds {MAX_FILE_SIZE // (1024 * 1024)} MB"}), 413
file.seek(0)
file_path = os.path.join(UPLOAD_FOLDER, filename)
try:
file.save(file_path)
except Exception as e:
return jsonify({"error": f"Failed to save file: {str(e)}"}), 500
try:
if filename.endswith('.pdf'):
text = extract_text_from_pdf(file_path)
elif filename.endswith(('.png', '.jpeg', '.jpg')):
text = extract_text_from_image(file_path)
else:
os.remove(file_path)
return jsonify({"error": "Unsupported file format."}), 400
except Exception as e:
os.remove(file_path)
return jsonify({"error": f"Text extraction failed: {str(e)}"}), 500
if not text.strip():
os.remove(file_path)
return jsonify({"error": "No text extracted"}), 400
try:
model = choose_model(text)
if model == "pegasus":
summary = summarize_with_pegasus(text)
elif model == "bert":
summary = summarize_with_bert(text)
elif model == "legalbert":
summary = summarize_with_legalbert(text)
except Exception as e:
os.remove(file_path)
return jsonify({"error": f"Summarization failed: {str(e)}"}), 500
os.remove(file_path)
return jsonify({"model_used": model, "summary": summary})
if __name__ == '__main__':
port = int(os.environ.get("PORT", 5000))
app.run(debug=False, host='0.0.0.0', port=port) |