Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) Meta Platforms, Inc. and affiliates. | |
All rights reserved. | |
This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import json | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from utils.misc import broadcast_tensors | |
def setup_tokenizer(resume_pth: str) -> "TemporalVertexCodec": | |
args_path = os.path.dirname(resume_pth) | |
with open(os.path.join(args_path, "args.json")) as f: | |
trans_args = json.load(f) | |
tokenizer = TemporalVertexCodec( | |
n_vertices=trans_args["nb_joints"], | |
latent_dim=trans_args["output_emb_width"], | |
categories=trans_args["code_dim"], | |
residual_depth=trans_args["depth"], | |
) | |
print("loading checkpoint from {}".format(resume_pth)) | |
ckpt = torch.load(resume_pth, map_location="cpu") | |
tokenizer.load_state_dict(ckpt["net"], strict=True) | |
for p in tokenizer.parameters(): | |
p.requires_grad = False | |
tokenizer.cuda() | |
return tokenizer | |
def default(val, d): | |
return val if val is not None else d | |
def ema_inplace(moving_avg, new, decay: float): | |
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5): | |
return (x + epsilon) / (x.sum() + n_categories * epsilon) | |
def uniform_init(*shape: int): | |
t = torch.empty(shape) | |
nn.init.kaiming_uniform_(t) | |
return t | |
def sum_flat(tensor): | |
""" | |
Take the sum over all non-batch dimensions. | |
""" | |
return tensor.sum(dim=list(range(1, len(tensor.shape)))) | |
def sample_vectors(samples, num: int): | |
num_samples, device = samples.shape[0], samples.device | |
if num_samples >= num: | |
indices = torch.randperm(num_samples, device=device)[:num] | |
else: | |
indices = torch.randint(0, num_samples, (num,), device=device) | |
return samples[indices] | |
def kmeans(samples, num_clusters: int, num_iters: int = 10): | |
dim, dtype = samples.shape[-1], samples.dtype | |
means = sample_vectors(samples, num_clusters) | |
for _ in range(num_iters): | |
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d") | |
dists = -(diffs**2).sum(dim=-1) | |
buckets = dists.max(dim=-1).indices | |
bins = torch.bincount(buckets, minlength=num_clusters) | |
zero_mask = bins == 0 | |
bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) | |
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) | |
new_means = new_means / bins_min_clamped[..., None] | |
means = torch.where(zero_mask[..., None], means, new_means) | |
return means, bins | |
class EuclideanCodebook(nn.Module): | |
"""Codebook with Euclidean distance. | |
Args: | |
dim (int): Dimension. | |
codebook_size (int): Codebook size. | |
kmeans_init (bool): Whether to use k-means to initialize the codebooks. | |
If set to true, run the k-means algorithm on the first training batch and use | |
the learned centroids as initialization. | |
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization. | |
decay (float): Decay for exponential moving average over the codebooks. | |
epsilon (float): Epsilon value for numerical stability. | |
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
that have an exponential moving average cluster size less than the specified threshold with | |
randomly selected vector from the current batch. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
codebook_size: int, | |
kmeans_init: int = False, | |
kmeans_iters: int = 10, | |
decay: float = 0.99, | |
epsilon: float = 1e-5, | |
threshold_ema_dead_code: int = 2, | |
): | |
super().__init__() | |
self.decay = decay | |
init_fn = uniform_init if not kmeans_init else torch.zeros | |
embed = init_fn(codebook_size, dim) | |
self.codebook_size = codebook_size | |
self.kmeans_iters = kmeans_iters | |
self.epsilon = epsilon | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.register_buffer("inited", torch.Tensor([not kmeans_init])) | |
self.register_buffer("cluster_size", torch.zeros(codebook_size)) | |
self.register_buffer("embed", embed) | |
self.register_buffer("embed_avg", embed.clone()) | |
def init_embed_(self, data): | |
if self.inited: | |
return | |
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) | |
self.embed.data.copy_(embed) | |
self.embed_avg.data.copy_(embed.clone()) | |
self.cluster_size.data.copy_(cluster_size) | |
self.inited.data.copy_(torch.Tensor([True])) | |
# Make sure all buffers across workers are in sync after initialization | |
broadcast_tensors(self.buffers()) | |
def replace_(self, samples, mask): | |
modified_codebook = torch.where( | |
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed | |
) | |
self.embed.data.copy_(modified_codebook) | |
def expire_codes_(self, batch_samples): | |
if self.threshold_ema_dead_code == 0: | |
return | |
expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
if not torch.any(expired_codes): | |
return | |
batch_samples = rearrange(batch_samples, "... d -> (...) d") | |
self.replace_(batch_samples, mask=expired_codes) | |
broadcast_tensors(self.buffers()) | |
def preprocess(self, x): | |
x = rearrange(x, "... d -> (...) d") | |
return x | |
def quantize(self, x): | |
embed = self.embed.t() | |
dist = -( | |
x.pow(2).sum(1, keepdim=True) | |
- 2 * x @ embed | |
+ embed.pow(2).sum(0, keepdim=True) | |
) | |
embed_ind = dist.max(dim=-1).indices | |
return embed_ind | |
def postprocess_emb(self, embed_ind, shape): | |
return embed_ind.view(*shape[:-1]) | |
def dequantize(self, embed_ind): | |
quantize = F.embedding(embed_ind, self.embed) | |
return quantize | |
def encode(self, x): | |
shape = x.shape | |
x = self.preprocess(x) | |
embed_ind = self.quantize(x) | |
embed_ind = self.postprocess_emb(embed_ind, shape) | |
return embed_ind | |
def decode(self, embed_ind): | |
quantize = self.dequantize(embed_ind) | |
return quantize | |
def forward(self, x): | |
shape, dtype = x.shape, x.dtype | |
x = self.preprocess(x) | |
self.init_embed_(x) | |
embed_ind = self.quantize(x) | |
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
embed_ind = self.postprocess_emb(embed_ind, shape) | |
quantize = self.dequantize(embed_ind) | |
if self.training: | |
# We do the expiry of code at that point as buffers are in sync | |
# and all the workers will take the same decision. | |
self.expire_codes_(x) | |
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) | |
embed_sum = x.t() @ embed_onehot | |
ema_inplace(self.embed_avg, embed_sum.t(), self.decay) | |
cluster_size = ( | |
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon) | |
* self.cluster_size.sum() | |
) | |
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) | |
self.embed.data.copy_(embed_normalized) | |
return quantize, embed_ind | |
class VectorQuantization(nn.Module): | |
"""Vector quantization implementation. | |
Currently supports only euclidean distance. | |
Args: | |
dim (int): Dimension | |
codebook_size (int): Codebook size | |
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. | |
decay (float): Decay for exponential moving average over the codebooks. | |
epsilon (float): Epsilon value for numerical stability. | |
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
kmeans_iters (int): Number of iterations used for kmeans initialization. | |
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
that have an exponential moving average cluster size less than the specified threshold with | |
randomly selected vector from the current batch. | |
commitment_weight (float): Weight for commitment loss. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
codebook_size: int, | |
codebook_dim=None, | |
decay: float = 0.99, | |
epsilon: float = 1e-5, | |
kmeans_init: bool = True, | |
kmeans_iters: int = 50, | |
threshold_ema_dead_code: int = 2, | |
commitment_weight: float = 1.0, | |
): | |
super().__init__() | |
_codebook_dim: int = default(codebook_dim, dim) | |
requires_projection = _codebook_dim != dim | |
self.project_in = ( | |
nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity() | |
) | |
self.project_out = ( | |
nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity() | |
) | |
self.epsilon = epsilon | |
self.commitment_weight = commitment_weight | |
self._codebook = EuclideanCodebook( | |
dim=_codebook_dim, | |
codebook_size=codebook_size, | |
kmeans_init=kmeans_init, | |
kmeans_iters=kmeans_iters, | |
decay=decay, | |
epsilon=epsilon, | |
threshold_ema_dead_code=threshold_ema_dead_code, | |
) | |
self.codebook_size = codebook_size | |
self.l2_loss = lambda a, b: (a - b) ** 2 | |
def codebook(self): | |
return self._codebook.embed | |
def encode(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.project_in(x) | |
embed_in = self._codebook.encode(x) | |
return embed_in | |
def decode(self, embed_ind: torch.Tensor) -> torch.Tensor: | |
quantize = self._codebook.decode(embed_ind) | |
quantize = self.project_out(quantize) | |
return quantize | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
:param x: B x dim input tensor | |
:return: quantize: B x dim tensor containing reconstruction after quantization | |
embed_ind: B-dimensional tensor containing embedding indices | |
loss: scalar tensor containing commitment loss | |
""" | |
device = x.device | |
x = self.project_in(x) | |
quantize, embed_ind = self._codebook(x) | |
if self.training: | |
quantize = x + (quantize - x).detach() | |
loss = torch.tensor([0.0], device=device, requires_grad=self.training) | |
if self.training: | |
if self.commitment_weight > 0: | |
commit_loss = F.mse_loss(quantize.detach(), x) | |
loss = loss + commit_loss * self.commitment_weight | |
quantize = self.project_out(quantize) | |
return quantize, embed_ind, loss | |
class ResidualVectorQuantization(nn.Module): | |
"""Residual vector quantization implementation. | |
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf | |
""" | |
def __init__(self, *, num_quantizers: int, **kwargs): | |
super().__init__() | |
self.layers = nn.ModuleList( | |
[VectorQuantization(**kwargs) for _ in range(num_quantizers)] | |
) | |
def forward(self, x, B, T, mask, n_q=None): | |
""" | |
:param x: B x dim tensor | |
:return: quantized_out: B x dim tensor | |
out_indices: B x n_q LongTensor containing indices for each quantizer | |
out_losses: scalar tensor containing commitment loss | |
""" | |
quantized_out = 0.0 | |
residual = x | |
all_losses = [] | |
all_indices = [] | |
n_q = n_q or len(self.layers) | |
for layer in self.layers[:n_q]: | |
quantized, indices, loss = layer(residual) | |
residual = ( | |
residual - quantized | |
) # would need quantizer.detach() to have commitment gradients beyond the first quantizer, but this seems to harm performance | |
quantized_out = quantized_out + quantized | |
all_indices.append(indices) | |
all_losses.append(loss) | |
out_indices = torch.stack(all_indices, dim=-1) | |
out_losses = torch.mean(torch.stack(all_losses)) | |
return quantized_out, out_indices, out_losses | |
def encode(self, x: torch.Tensor, n_q=None) -> torch.Tensor: | |
""" | |
:param x: B x dim input tensor | |
:return: B x n_q LongTensor containing indices for each quantizer | |
""" | |
residual = x | |
all_indices = [] | |
n_q = n_q or len(self.layers) | |
for layer in self.layers[:n_q]: | |
indices = layer.encode(residual) # indices = 16 x 8 = B x T | |
# print(indices.shape, residual.shape, x.shape) | |
quantized = layer.decode(indices) | |
residual = residual - quantized | |
all_indices.append(indices) | |
out_indices = torch.stack(all_indices, dim=-1) | |
return out_indices | |
def decode(self, q_indices: torch.Tensor) -> torch.Tensor: | |
""" | |
:param q_indices: B x n_q LongTensor containing indices for each quantizer | |
:return: B x dim tensor containing reconstruction after quantization | |
""" | |
quantized_out = torch.tensor(0.0, device=q_indices.device) | |
q_indices = q_indices.permute(1, 0).contiguous() | |
for i, indices in enumerate(q_indices): | |
layer = self.layers[i] | |
quantized = layer.decode(indices) | |
quantized_out = quantized_out + quantized | |
return quantized_out | |
class TemporalVertexEncoder(nn.Module): | |
def __init__( | |
self, | |
n_vertices: int = 338, | |
latent_dim: int = 128, | |
): | |
super().__init__() | |
self.input_dim = n_vertices | |
self.enc = nn.Sequential( | |
nn.Conv1d(self.input_dim, latent_dim, kernel_size=1), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=2), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=3), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1), | |
) | |
self.receptive_field = 8 | |
def forward(self, verts): | |
""" | |
:param verts: B x T x n_vertices x 3 tensor containing batched sequences of vertices | |
:return: B x T x latent_dim tensor containing the latent representation | |
""" | |
if verts.dim() == 4: | |
verts = verts.permute(0, 2, 3, 1).contiguous() | |
verts = verts.view(verts.shape[0], self.input_dim, verts.shape[3]) | |
else: | |
verts = verts.permute(0, 2, 1) | |
verts = nn.functional.pad(verts, pad=[self.receptive_field - 1, 0]) | |
x = self.enc(verts) | |
x = x.permute(0, 2, 1).contiguous() | |
return x | |
class TemporalVertexDecoder(nn.Module): | |
def __init__( | |
self, | |
n_vertices: int = 338, | |
latent_dim: int = 128, | |
): | |
super().__init__() | |
self.output_dim = n_vertices | |
self.project_mean_shape = nn.Linear(self.output_dim, latent_dim) | |
self.dec = nn.Sequential( | |
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=2), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=3), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv1d(latent_dim, self.output_dim, kernel_size=1), | |
) | |
self.receptive_field = 8 | |
def forward(self, x): | |
""" | |
:param x: B x T x latent_dim tensor containing batched sequences of vertex encodings | |
:return: B x T x n_vertices x 3 tensor containing batched sequences of vertices | |
""" | |
x = x.permute(0, 2, 1).contiguous() | |
x = nn.functional.pad(x, pad=[self.receptive_field - 1, 0]) | |
verts = self.dec(x) | |
verts = verts.permute(0, 2, 1) | |
return verts | |
class TemporalVertexCodec(nn.Module): | |
def __init__( | |
self, | |
n_vertices: int = 338, | |
latent_dim: int = 128, | |
categories: int = 128, | |
residual_depth: int = 4, | |
): | |
super().__init__() | |
self.latent_dim = latent_dim | |
self.categories = categories | |
self.residual_depth = residual_depth | |
self.n_clusters = categories | |
self.encoder = TemporalVertexEncoder( | |
n_vertices=n_vertices, latent_dim=latent_dim | |
) | |
self.decoder = TemporalVertexDecoder( | |
n_vertices=n_vertices, latent_dim=latent_dim | |
) | |
self.quantizer = ResidualVectorQuantization( | |
dim=latent_dim, | |
codebook_size=categories, | |
num_quantizers=residual_depth, | |
decay=0.99, | |
kmeans_init=True, | |
kmeans_iters=10, | |
threshold_ema_dead_code=2, | |
) | |
def predict(self, verts): | |
"""wrapper to provide compatibility with kmeans""" | |
return self.encode(verts) | |
def encode(self, verts): | |
""" | |
:param verts: B x T x n_vertices x 3 tensor containing batched sequences of vertices | |
:return: B x T x categories x residual_depth LongTensor containing quantized encodings | |
""" | |
enc = self.encoder(verts) | |
q = self.quantizer.encode(enc) | |
return q | |
def decode(self, q): | |
""" | |
:param q: B x T x categories x residual_depth LongTensor containing quantized encodings | |
:return: B x T x n_vertices x 3 tensor containing decoded vertices | |
""" | |
reformat = q.dim() > 2 | |
if reformat: | |
B, T, _ = q.shape | |
q = q.reshape((-1, self.residual_depth)) | |
enc = self.quantizer.decode(q) | |
if reformat: | |
enc = enc.reshape((B, T, -1)) | |
verts = self.decoder(enc) | |
return verts | |
def compute_perplexity(self, code_idx): | |
# Calculate new centres | |
code_onehot = torch.zeros( | |
self.categories, code_idx.shape[0], device=code_idx.device | |
) # categories, N * L | |
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1) | |
code_count = code_onehot.sum(dim=-1) # categories | |
prob = code_count / torch.sum(code_count) | |
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7))) | |
return perplexity | |
def forward(self, verts, mask=None): | |
""" | |
:param verts: B x T x n_vertices x 3 tensor containing mesh sequences | |
:return: verts: B x T x n_vertices x 3 tensor containing reconstructed mesh sequences | |
vq_loss: scalar tensor for vq commitment loss | |
""" | |
B, T = verts.shape[0], verts.shape[1] | |
x = self.encoder(verts) | |
x, code_idx, vq_loss = self.quantizer( | |
x.view(B * T, self.latent_dim), B, T, mask | |
) | |
perplexity = self.compute_perplexity(code_idx[:, -1].view((-1))) | |
verts = self.decoder(x.view(B, T, self.latent_dim)) | |
verts = verts.reshape((verts.shape[0], verts.shape[1], -1)) | |
return verts, vq_loss, perplexity | |