lybxin's picture
Upload folder using huggingface_hub
66b7c56 verified
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import json
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from utils.misc import broadcast_tensors
def setup_tokenizer(resume_pth: str) -> "TemporalVertexCodec":
args_path = os.path.dirname(resume_pth)
with open(os.path.join(args_path, "args.json")) as f:
trans_args = json.load(f)
tokenizer = TemporalVertexCodec(
n_vertices=trans_args["nb_joints"],
latent_dim=trans_args["output_emb_width"],
categories=trans_args["code_dim"],
residual_depth=trans_args["depth"],
)
print("loading checkpoint from {}".format(resume_pth))
ckpt = torch.load(resume_pth, map_location="cpu")
tokenizer.load_state_dict(ckpt["net"], strict=True)
for p in tokenizer.parameters():
p.requires_grad = False
tokenizer.cuda()
return tokenizer
def default(val, d):
return val if val is not None else d
def ema_inplace(moving_avg, new, decay: float):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
return (x + epsilon) / (x.sum() + n_categories * epsilon)
def uniform_init(*shape: int):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def sum_flat(tensor):
"""
Take the sum over all non-batch dimensions.
"""
return tensor.sum(dim=list(range(1, len(tensor.shape))))
def sample_vectors(samples, num: int):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def kmeans(samples, num_clusters: int, num_iters: int = 10):
dim, dtype = samples.shape[-1], samples.dtype
means = sample_vectors(samples, num_clusters)
for _ in range(num_iters):
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d")
dists = -(diffs**2).sum(dim=-1)
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
new_means = new_means / bins_min_clamped[..., None]
means = torch.where(zero_mask[..., None], means, new_means)
return means, bins
class EuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance.
Args:
dim (int): Dimension.
codebook_size (int): Codebook size.
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
If set to true, run the k-means algorithm on the first training batch and use
the learned centroids as initialization.
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dim: int,
codebook_size: int,
kmeans_init: int = False,
kmeans_iters: int = 10,
decay: float = 0.99,
epsilon: float = 1e-5,
threshold_ema_dead_code: int = 2,
):
super().__init__()
self.decay = decay
init_fn = uniform_init if not kmeans_init else torch.zeros
embed = init_fn(codebook_size, dim)
self.codebook_size = codebook_size
self.kmeans_iters = kmeans_iters
self.epsilon = epsilon
self.threshold_ema_dead_code = threshold_ema_dead_code
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
self.register_buffer("cluster_size", torch.zeros(codebook_size))
self.register_buffer("embed", embed)
self.register_buffer("embed_avg", embed.clone())
@torch.jit.ignore
def init_embed_(self, data):
if self.inited:
return
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed.clone())
self.cluster_size.data.copy_(cluster_size)
self.inited.data.copy_(torch.Tensor([True]))
# Make sure all buffers across workers are in sync after initialization
broadcast_tensors(self.buffers())
def replace_(self, samples, mask):
modified_codebook = torch.where(
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
)
self.embed.data.copy_(modified_codebook)
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, "... d -> (...) d")
self.replace_(batch_samples, mask=expired_codes)
broadcast_tensors(self.buffers())
def preprocess(self, x):
x = rearrange(x, "... d -> (...) d")
return x
def quantize(self, x):
embed = self.embed.t()
dist = -(
x.pow(2).sum(1, keepdim=True)
- 2 * x @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
return embed_ind
def postprocess_emb(self, embed_ind, shape):
return embed_ind.view(*shape[:-1])
def dequantize(self, embed_ind):
quantize = F.embedding(embed_ind, self.embed)
return quantize
def encode(self, x):
shape = x.shape
x = self.preprocess(x)
embed_ind = self.quantize(x)
embed_ind = self.postprocess_emb(embed_ind, shape)
return embed_ind
def decode(self, embed_ind):
quantize = self.dequantize(embed_ind)
return quantize
def forward(self, x):
shape, dtype = x.shape, x.dtype
x = self.preprocess(x)
self.init_embed_(x)
embed_ind = self.quantize(x)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = self.postprocess_emb(embed_ind, shape)
quantize = self.dequantize(embed_ind)
if self.training:
# We do the expiry of code at that point as buffers are in sync
# and all the workers will take the same decision.
self.expire_codes_(x)
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
embed_sum = x.t() @ embed_onehot
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
cluster_size = (
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
* self.cluster_size.sum()
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
self.embed.data.copy_(embed_normalized)
return quantize, embed_ind
class VectorQuantization(nn.Module):
"""Vector quantization implementation.
Currently supports only euclidean distance.
Args:
dim (int): Dimension
codebook_size (int): Codebook size
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
commitment_weight (float): Weight for commitment loss.
"""
def __init__(
self,
dim: int,
codebook_size: int,
codebook_dim=None,
decay: float = 0.99,
epsilon: float = 1e-5,
kmeans_init: bool = True,
kmeans_iters: int = 50,
threshold_ema_dead_code: int = 2,
commitment_weight: float = 1.0,
):
super().__init__()
_codebook_dim: int = default(codebook_dim, dim)
requires_projection = _codebook_dim != dim
self.project_in = (
nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()
)
self.project_out = (
nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()
)
self.epsilon = epsilon
self.commitment_weight = commitment_weight
self._codebook = EuclideanCodebook(
dim=_codebook_dim,
codebook_size=codebook_size,
kmeans_init=kmeans_init,
kmeans_iters=kmeans_iters,
decay=decay,
epsilon=epsilon,
threshold_ema_dead_code=threshold_ema_dead_code,
)
self.codebook_size = codebook_size
self.l2_loss = lambda a, b: (a - b) ** 2
@property
def codebook(self):
return self._codebook.embed
def encode(self, x: torch.Tensor) -> torch.Tensor:
x = self.project_in(x)
embed_in = self._codebook.encode(x)
return embed_in
def decode(self, embed_ind: torch.Tensor) -> torch.Tensor:
quantize = self._codebook.decode(embed_ind)
quantize = self.project_out(quantize)
return quantize
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
:param x: B x dim input tensor
:return: quantize: B x dim tensor containing reconstruction after quantization
embed_ind: B-dimensional tensor containing embedding indices
loss: scalar tensor containing commitment loss
"""
device = x.device
x = self.project_in(x)
quantize, embed_ind = self._codebook(x)
if self.training:
quantize = x + (quantize - x).detach()
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
if self.training:
if self.commitment_weight > 0:
commit_loss = F.mse_loss(quantize.detach(), x)
loss = loss + commit_loss * self.commitment_weight
quantize = self.project_out(quantize)
return quantize, embed_ind, loss
class ResidualVectorQuantization(nn.Module):
"""Residual vector quantization implementation.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, *, num_quantizers: int, **kwargs):
super().__init__()
self.layers = nn.ModuleList(
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
)
def forward(self, x, B, T, mask, n_q=None):
"""
:param x: B x dim tensor
:return: quantized_out: B x dim tensor
out_indices: B x n_q LongTensor containing indices for each quantizer
out_losses: scalar tensor containing commitment loss
"""
quantized_out = 0.0
residual = x
all_losses = []
all_indices = []
n_q = n_q or len(self.layers)
for layer in self.layers[:n_q]:
quantized, indices, loss = layer(residual)
residual = (
residual - quantized
) # would need quantizer.detach() to have commitment gradients beyond the first quantizer, but this seems to harm performance
quantized_out = quantized_out + quantized
all_indices.append(indices)
all_losses.append(loss)
out_indices = torch.stack(all_indices, dim=-1)
out_losses = torch.mean(torch.stack(all_losses))
return quantized_out, out_indices, out_losses
def encode(self, x: torch.Tensor, n_q=None) -> torch.Tensor:
"""
:param x: B x dim input tensor
:return: B x n_q LongTensor containing indices for each quantizer
"""
residual = x
all_indices = []
n_q = n_q or len(self.layers)
for layer in self.layers[:n_q]:
indices = layer.encode(residual) # indices = 16 x 8 = B x T
# print(indices.shape, residual.shape, x.shape)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices, dim=-1)
return out_indices
def decode(self, q_indices: torch.Tensor) -> torch.Tensor:
"""
:param q_indices: B x n_q LongTensor containing indices for each quantizer
:return: B x dim tensor containing reconstruction after quantization
"""
quantized_out = torch.tensor(0.0, device=q_indices.device)
q_indices = q_indices.permute(1, 0).contiguous()
for i, indices in enumerate(q_indices):
layer = self.layers[i]
quantized = layer.decode(indices)
quantized_out = quantized_out + quantized
return quantized_out
class TemporalVertexEncoder(nn.Module):
def __init__(
self,
n_vertices: int = 338,
latent_dim: int = 128,
):
super().__init__()
self.input_dim = n_vertices
self.enc = nn.Sequential(
nn.Conv1d(self.input_dim, latent_dim, kernel_size=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=2),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=3),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1),
)
self.receptive_field = 8
def forward(self, verts):
"""
:param verts: B x T x n_vertices x 3 tensor containing batched sequences of vertices
:return: B x T x latent_dim tensor containing the latent representation
"""
if verts.dim() == 4:
verts = verts.permute(0, 2, 3, 1).contiguous()
verts = verts.view(verts.shape[0], self.input_dim, verts.shape[3])
else:
verts = verts.permute(0, 2, 1)
verts = nn.functional.pad(verts, pad=[self.receptive_field - 1, 0])
x = self.enc(verts)
x = x.permute(0, 2, 1).contiguous()
return x
class TemporalVertexDecoder(nn.Module):
def __init__(
self,
n_vertices: int = 338,
latent_dim: int = 128,
):
super().__init__()
self.output_dim = n_vertices
self.project_mean_shape = nn.Linear(self.output_dim, latent_dim)
self.dec = nn.Sequential(
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=2),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=3),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, self.output_dim, kernel_size=1),
)
self.receptive_field = 8
def forward(self, x):
"""
:param x: B x T x latent_dim tensor containing batched sequences of vertex encodings
:return: B x T x n_vertices x 3 tensor containing batched sequences of vertices
"""
x = x.permute(0, 2, 1).contiguous()
x = nn.functional.pad(x, pad=[self.receptive_field - 1, 0])
verts = self.dec(x)
verts = verts.permute(0, 2, 1)
return verts
class TemporalVertexCodec(nn.Module):
def __init__(
self,
n_vertices: int = 338,
latent_dim: int = 128,
categories: int = 128,
residual_depth: int = 4,
):
super().__init__()
self.latent_dim = latent_dim
self.categories = categories
self.residual_depth = residual_depth
self.n_clusters = categories
self.encoder = TemporalVertexEncoder(
n_vertices=n_vertices, latent_dim=latent_dim
)
self.decoder = TemporalVertexDecoder(
n_vertices=n_vertices, latent_dim=latent_dim
)
self.quantizer = ResidualVectorQuantization(
dim=latent_dim,
codebook_size=categories,
num_quantizers=residual_depth,
decay=0.99,
kmeans_init=True,
kmeans_iters=10,
threshold_ema_dead_code=2,
)
def predict(self, verts):
"""wrapper to provide compatibility with kmeans"""
return self.encode(verts)
def encode(self, verts):
"""
:param verts: B x T x n_vertices x 3 tensor containing batched sequences of vertices
:return: B x T x categories x residual_depth LongTensor containing quantized encodings
"""
enc = self.encoder(verts)
q = self.quantizer.encode(enc)
return q
def decode(self, q):
"""
:param q: B x T x categories x residual_depth LongTensor containing quantized encodings
:return: B x T x n_vertices x 3 tensor containing decoded vertices
"""
reformat = q.dim() > 2
if reformat:
B, T, _ = q.shape
q = q.reshape((-1, self.residual_depth))
enc = self.quantizer.decode(q)
if reformat:
enc = enc.reshape((B, T, -1))
verts = self.decoder(enc)
return verts
@torch.no_grad()
def compute_perplexity(self, code_idx):
# Calculate new centres
code_onehot = torch.zeros(
self.categories, code_idx.shape[0], device=code_idx.device
) # categories, N * L
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
code_count = code_onehot.sum(dim=-1) # categories
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
def forward(self, verts, mask=None):
"""
:param verts: B x T x n_vertices x 3 tensor containing mesh sequences
:return: verts: B x T x n_vertices x 3 tensor containing reconstructed mesh sequences
vq_loss: scalar tensor for vq commitment loss
"""
B, T = verts.shape[0], verts.shape[1]
x = self.encoder(verts)
x, code_idx, vq_loss = self.quantizer(
x.view(B * T, self.latent_dim), B, T, mask
)
perplexity = self.compute_perplexity(code_idx[:, -1].view((-1)))
verts = self.decoder(x.view(B, T, self.latent_dim))
verts = verts.reshape((verts.shape[0], verts.shape[1], -1))
return verts, vq_loss, perplexity