Spaces:
Runtime error
Runtime error
File size: 19,737 Bytes
66b7c56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import json
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from utils.misc import broadcast_tensors
def setup_tokenizer(resume_pth: str) -> "TemporalVertexCodec":
args_path = os.path.dirname(resume_pth)
with open(os.path.join(args_path, "args.json")) as f:
trans_args = json.load(f)
tokenizer = TemporalVertexCodec(
n_vertices=trans_args["nb_joints"],
latent_dim=trans_args["output_emb_width"],
categories=trans_args["code_dim"],
residual_depth=trans_args["depth"],
)
print("loading checkpoint from {}".format(resume_pth))
ckpt = torch.load(resume_pth, map_location="cpu")
tokenizer.load_state_dict(ckpt["net"], strict=True)
for p in tokenizer.parameters():
p.requires_grad = False
tokenizer.cuda()
return tokenizer
def default(val, d):
return val if val is not None else d
def ema_inplace(moving_avg, new, decay: float):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
return (x + epsilon) / (x.sum() + n_categories * epsilon)
def uniform_init(*shape: int):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def sum_flat(tensor):
"""
Take the sum over all non-batch dimensions.
"""
return tensor.sum(dim=list(range(1, len(tensor.shape))))
def sample_vectors(samples, num: int):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def kmeans(samples, num_clusters: int, num_iters: int = 10):
dim, dtype = samples.shape[-1], samples.dtype
means = sample_vectors(samples, num_clusters)
for _ in range(num_iters):
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d")
dists = -(diffs**2).sum(dim=-1)
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
new_means = new_means / bins_min_clamped[..., None]
means = torch.where(zero_mask[..., None], means, new_means)
return means, bins
class EuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance.
Args:
dim (int): Dimension.
codebook_size (int): Codebook size.
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
If set to true, run the k-means algorithm on the first training batch and use
the learned centroids as initialization.
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
dim: int,
codebook_size: int,
kmeans_init: int = False,
kmeans_iters: int = 10,
decay: float = 0.99,
epsilon: float = 1e-5,
threshold_ema_dead_code: int = 2,
):
super().__init__()
self.decay = decay
init_fn = uniform_init if not kmeans_init else torch.zeros
embed = init_fn(codebook_size, dim)
self.codebook_size = codebook_size
self.kmeans_iters = kmeans_iters
self.epsilon = epsilon
self.threshold_ema_dead_code = threshold_ema_dead_code
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
self.register_buffer("cluster_size", torch.zeros(codebook_size))
self.register_buffer("embed", embed)
self.register_buffer("embed_avg", embed.clone())
@torch.jit.ignore
def init_embed_(self, data):
if self.inited:
return
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed.clone())
self.cluster_size.data.copy_(cluster_size)
self.inited.data.copy_(torch.Tensor([True]))
# Make sure all buffers across workers are in sync after initialization
broadcast_tensors(self.buffers())
def replace_(self, samples, mask):
modified_codebook = torch.where(
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
)
self.embed.data.copy_(modified_codebook)
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, "... d -> (...) d")
self.replace_(batch_samples, mask=expired_codes)
broadcast_tensors(self.buffers())
def preprocess(self, x):
x = rearrange(x, "... d -> (...) d")
return x
def quantize(self, x):
embed = self.embed.t()
dist = -(
x.pow(2).sum(1, keepdim=True)
- 2 * x @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
return embed_ind
def postprocess_emb(self, embed_ind, shape):
return embed_ind.view(*shape[:-1])
def dequantize(self, embed_ind):
quantize = F.embedding(embed_ind, self.embed)
return quantize
def encode(self, x):
shape = x.shape
x = self.preprocess(x)
embed_ind = self.quantize(x)
embed_ind = self.postprocess_emb(embed_ind, shape)
return embed_ind
def decode(self, embed_ind):
quantize = self.dequantize(embed_ind)
return quantize
def forward(self, x):
shape, dtype = x.shape, x.dtype
x = self.preprocess(x)
self.init_embed_(x)
embed_ind = self.quantize(x)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = self.postprocess_emb(embed_ind, shape)
quantize = self.dequantize(embed_ind)
if self.training:
# We do the expiry of code at that point as buffers are in sync
# and all the workers will take the same decision.
self.expire_codes_(x)
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
embed_sum = x.t() @ embed_onehot
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
cluster_size = (
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
* self.cluster_size.sum()
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
self.embed.data.copy_(embed_normalized)
return quantize, embed_ind
class VectorQuantization(nn.Module):
"""Vector quantization implementation.
Currently supports only euclidean distance.
Args:
dim (int): Dimension
codebook_size (int): Codebook size
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
commitment_weight (float): Weight for commitment loss.
"""
def __init__(
self,
dim: int,
codebook_size: int,
codebook_dim=None,
decay: float = 0.99,
epsilon: float = 1e-5,
kmeans_init: bool = True,
kmeans_iters: int = 50,
threshold_ema_dead_code: int = 2,
commitment_weight: float = 1.0,
):
super().__init__()
_codebook_dim: int = default(codebook_dim, dim)
requires_projection = _codebook_dim != dim
self.project_in = (
nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()
)
self.project_out = (
nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()
)
self.epsilon = epsilon
self.commitment_weight = commitment_weight
self._codebook = EuclideanCodebook(
dim=_codebook_dim,
codebook_size=codebook_size,
kmeans_init=kmeans_init,
kmeans_iters=kmeans_iters,
decay=decay,
epsilon=epsilon,
threshold_ema_dead_code=threshold_ema_dead_code,
)
self.codebook_size = codebook_size
self.l2_loss = lambda a, b: (a - b) ** 2
@property
def codebook(self):
return self._codebook.embed
def encode(self, x: torch.Tensor) -> torch.Tensor:
x = self.project_in(x)
embed_in = self._codebook.encode(x)
return embed_in
def decode(self, embed_ind: torch.Tensor) -> torch.Tensor:
quantize = self._codebook.decode(embed_ind)
quantize = self.project_out(quantize)
return quantize
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
:param x: B x dim input tensor
:return: quantize: B x dim tensor containing reconstruction after quantization
embed_ind: B-dimensional tensor containing embedding indices
loss: scalar tensor containing commitment loss
"""
device = x.device
x = self.project_in(x)
quantize, embed_ind = self._codebook(x)
if self.training:
quantize = x + (quantize - x).detach()
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
if self.training:
if self.commitment_weight > 0:
commit_loss = F.mse_loss(quantize.detach(), x)
loss = loss + commit_loss * self.commitment_weight
quantize = self.project_out(quantize)
return quantize, embed_ind, loss
class ResidualVectorQuantization(nn.Module):
"""Residual vector quantization implementation.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, *, num_quantizers: int, **kwargs):
super().__init__()
self.layers = nn.ModuleList(
[VectorQuantization(**kwargs) for _ in range(num_quantizers)]
)
def forward(self, x, B, T, mask, n_q=None):
"""
:param x: B x dim tensor
:return: quantized_out: B x dim tensor
out_indices: B x n_q LongTensor containing indices for each quantizer
out_losses: scalar tensor containing commitment loss
"""
quantized_out = 0.0
residual = x
all_losses = []
all_indices = []
n_q = n_q or len(self.layers)
for layer in self.layers[:n_q]:
quantized, indices, loss = layer(residual)
residual = (
residual - quantized
) # would need quantizer.detach() to have commitment gradients beyond the first quantizer, but this seems to harm performance
quantized_out = quantized_out + quantized
all_indices.append(indices)
all_losses.append(loss)
out_indices = torch.stack(all_indices, dim=-1)
out_losses = torch.mean(torch.stack(all_losses))
return quantized_out, out_indices, out_losses
def encode(self, x: torch.Tensor, n_q=None) -> torch.Tensor:
"""
:param x: B x dim input tensor
:return: B x n_q LongTensor containing indices for each quantizer
"""
residual = x
all_indices = []
n_q = n_q or len(self.layers)
for layer in self.layers[:n_q]:
indices = layer.encode(residual) # indices = 16 x 8 = B x T
# print(indices.shape, residual.shape, x.shape)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices, dim=-1)
return out_indices
def decode(self, q_indices: torch.Tensor) -> torch.Tensor:
"""
:param q_indices: B x n_q LongTensor containing indices for each quantizer
:return: B x dim tensor containing reconstruction after quantization
"""
quantized_out = torch.tensor(0.0, device=q_indices.device)
q_indices = q_indices.permute(1, 0).contiguous()
for i, indices in enumerate(q_indices):
layer = self.layers[i]
quantized = layer.decode(indices)
quantized_out = quantized_out + quantized
return quantized_out
class TemporalVertexEncoder(nn.Module):
def __init__(
self,
n_vertices: int = 338,
latent_dim: int = 128,
):
super().__init__()
self.input_dim = n_vertices
self.enc = nn.Sequential(
nn.Conv1d(self.input_dim, latent_dim, kernel_size=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=2),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=3),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1),
)
self.receptive_field = 8
def forward(self, verts):
"""
:param verts: B x T x n_vertices x 3 tensor containing batched sequences of vertices
:return: B x T x latent_dim tensor containing the latent representation
"""
if verts.dim() == 4:
verts = verts.permute(0, 2, 3, 1).contiguous()
verts = verts.view(verts.shape[0], self.input_dim, verts.shape[3])
else:
verts = verts.permute(0, 2, 1)
verts = nn.functional.pad(verts, pad=[self.receptive_field - 1, 0])
x = self.enc(verts)
x = x.permute(0, 2, 1).contiguous()
return x
class TemporalVertexDecoder(nn.Module):
def __init__(
self,
n_vertices: int = 338,
latent_dim: int = 128,
):
super().__init__()
self.output_dim = n_vertices
self.project_mean_shape = nn.Linear(self.output_dim, latent_dim)
self.dec = nn.Sequential(
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=2),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=3),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv1d(latent_dim, self.output_dim, kernel_size=1),
)
self.receptive_field = 8
def forward(self, x):
"""
:param x: B x T x latent_dim tensor containing batched sequences of vertex encodings
:return: B x T x n_vertices x 3 tensor containing batched sequences of vertices
"""
x = x.permute(0, 2, 1).contiguous()
x = nn.functional.pad(x, pad=[self.receptive_field - 1, 0])
verts = self.dec(x)
verts = verts.permute(0, 2, 1)
return verts
class TemporalVertexCodec(nn.Module):
def __init__(
self,
n_vertices: int = 338,
latent_dim: int = 128,
categories: int = 128,
residual_depth: int = 4,
):
super().__init__()
self.latent_dim = latent_dim
self.categories = categories
self.residual_depth = residual_depth
self.n_clusters = categories
self.encoder = TemporalVertexEncoder(
n_vertices=n_vertices, latent_dim=latent_dim
)
self.decoder = TemporalVertexDecoder(
n_vertices=n_vertices, latent_dim=latent_dim
)
self.quantizer = ResidualVectorQuantization(
dim=latent_dim,
codebook_size=categories,
num_quantizers=residual_depth,
decay=0.99,
kmeans_init=True,
kmeans_iters=10,
threshold_ema_dead_code=2,
)
def predict(self, verts):
"""wrapper to provide compatibility with kmeans"""
return self.encode(verts)
def encode(self, verts):
"""
:param verts: B x T x n_vertices x 3 tensor containing batched sequences of vertices
:return: B x T x categories x residual_depth LongTensor containing quantized encodings
"""
enc = self.encoder(verts)
q = self.quantizer.encode(enc)
return q
def decode(self, q):
"""
:param q: B x T x categories x residual_depth LongTensor containing quantized encodings
:return: B x T x n_vertices x 3 tensor containing decoded vertices
"""
reformat = q.dim() > 2
if reformat:
B, T, _ = q.shape
q = q.reshape((-1, self.residual_depth))
enc = self.quantizer.decode(q)
if reformat:
enc = enc.reshape((B, T, -1))
verts = self.decoder(enc)
return verts
@torch.no_grad()
def compute_perplexity(self, code_idx):
# Calculate new centres
code_onehot = torch.zeros(
self.categories, code_idx.shape[0], device=code_idx.device
) # categories, N * L
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
code_count = code_onehot.sum(dim=-1) # categories
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
def forward(self, verts, mask=None):
"""
:param verts: B x T x n_vertices x 3 tensor containing mesh sequences
:return: verts: B x T x n_vertices x 3 tensor containing reconstructed mesh sequences
vq_loss: scalar tensor for vq commitment loss
"""
B, T = verts.shape[0], verts.shape[1]
x = self.encoder(verts)
x, code_idx, vq_loss = self.quantizer(
x.view(B * T, self.latent_dim), B, T, mask
)
perplexity = self.compute_perplexity(code_idx[:, -1].view((-1)))
verts = self.decoder(x.view(B, T, self.latent_dim))
verts = verts.reshape((verts.shape[0], verts.shape[1], -1))
return verts, vq_loss, perplexity
|