audio2photoreal / model /diffusion.py
lybxin's picture
Upload folder using huggingface_hub
66b7c56 verified
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import json
from typing import Callable, Optional
import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Rearrange
from model.guide import GuideTransformer
from model.modules.audio_encoder import Wav2VecEncoder
from model.modules.rotary_embedding_torch import RotaryEmbedding
from model.modules.transformer_modules import (
DecoderLayerStack,
FiLMTransformerDecoderLayer,
RegressionTransformer,
TransformerEncoderLayerRotary,
)
from model.utils import (
init_weight,
PositionalEncoding,
prob_mask_like,
setup_lip_regressor,
SinusoidalPosEmb,
)
from model.vqvae import setup_tokenizer
from torch.nn import functional as F
from utils.misc import prGreen, prRed
class Audio2LipRegressionTransformer(torch.nn.Module):
def __init__(
self,
n_vertices: int = 338,
causal: bool = False,
train_wav2vec: bool = False,
transformer_encoder_layers: int = 2,
transformer_decoder_layers: int = 4,
):
super().__init__()
self.n_vertices = n_vertices
self.audio_encoder = Wav2VecEncoder()
if not train_wav2vec:
self.audio_encoder.eval()
for param in self.audio_encoder.parameters():
param.requires_grad = False
self.regression_model = RegressionTransformer(
transformer_encoder_layers=transformer_encoder_layers,
transformer_decoder_layers=transformer_decoder_layers,
d_model=512,
d_cond=512,
num_heads=4,
causal=causal,
)
self.project_output = torch.nn.Linear(512, self.n_vertices * 3)
def forward(self, audio):
"""
:param audio: tensor of shape B x T x 1600
:return: tensor of shape B x T x n_vertices x 3 containing reconstructed lip geometry
"""
B, T = audio.shape[0], audio.shape[1]
cond = self.audio_encoder(audio)
x = torch.zeros(B, T, 512, device=audio.device)
x = self.regression_model(x, cond)
x = self.project_output(x)
verts = x.view(B, T, self.n_vertices, 3)
return verts
class FiLMTransformer(nn.Module):
def __init__(
self,
args,
nfeats: int,
latent_dim: int = 512,
ff_size: int = 1024,
num_layers: int = 4,
num_heads: int = 4,
dropout: float = 0.1,
cond_feature_dim: int = 4800,
activation: Callable[[torch.Tensor], torch.Tensor] = F.gelu,
use_rotary: bool = True,
cond_mode: str = "audio",
split_type: str = "train",
device: str = "cuda",
**kwargs,
) -> None:
super().__init__()
self.nfeats = nfeats
self.cond_mode = cond_mode
self.cond_feature_dim = cond_feature_dim
self.add_frame_cond = args.add_frame_cond
self.data_format = args.data_format
self.split_type = split_type
self.device = device
# positional embeddings
self.rotary = None
self.abs_pos_encoding = nn.Identity()
# if rotary, replace absolute embedding with a rotary embedding instance (absolute becomes an identity)
if use_rotary:
self.rotary = RotaryEmbedding(dim=latent_dim)
else:
self.abs_pos_encoding = PositionalEncoding(
latent_dim, dropout, batch_first=True
)
# time embedding processing
self.time_mlp = nn.Sequential(
SinusoidalPosEmb(latent_dim),
nn.Linear(latent_dim, latent_dim * 4),
nn.Mish(),
)
self.to_time_cond = nn.Sequential(
nn.Linear(latent_dim * 4, latent_dim),
)
self.to_time_tokens = nn.Sequential(
nn.Linear(latent_dim * 4, latent_dim * 2),
Rearrange("b (r d) -> b r d", r=2),
)
# null embeddings for guidance dropout
self.seq_len = args.max_seq_length
emb_len = 1998 # hardcoded for now
self.null_cond_embed = nn.Parameter(torch.randn(1, emb_len, latent_dim))
self.null_cond_hidden = nn.Parameter(torch.randn(1, latent_dim))
self.norm_cond = nn.LayerNorm(latent_dim)
self.setup_audio_models()
# set up pose/face specific parts of the model
self.input_projection = nn.Linear(self.nfeats, latent_dim)
if self.data_format == "pose":
cond_feature_dim = 1024
key_feature_dim = 104
self.step = 30
self.use_cm = True
self.setup_guide_models(args, latent_dim, key_feature_dim)
self.post_pose_layers = self._build_single_pose_conv(self.nfeats)
self.post_pose_layers.apply(init_weight)
self.final_conv = torch.nn.Conv1d(self.nfeats, self.nfeats, kernel_size=1)
self.receptive_field = 25
elif self.data_format == "face":
self.use_cm = False
cond_feature_dim = 1024 + 1014
self.setup_lip_models()
self.cond_encoder = nn.Sequential()
for _ in range(2):
self.cond_encoder.append(
TransformerEncoderLayerRotary(
d_model=latent_dim,
nhead=num_heads,
dim_feedforward=ff_size,
dropout=dropout,
activation=activation,
batch_first=True,
rotary=self.rotary,
)
)
self.cond_encoder.apply(init_weight)
self.cond_projection = nn.Linear(cond_feature_dim, latent_dim)
self.non_attn_cond_projection = nn.Sequential(
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, latent_dim),
nn.SiLU(),
nn.Linear(latent_dim, latent_dim),
)
# decoder
decoderstack = nn.ModuleList([])
for _ in range(num_layers):
decoderstack.append(
FiLMTransformerDecoderLayer(
latent_dim,
num_heads,
dim_feedforward=ff_size,
dropout=dropout,
activation=activation,
batch_first=True,
rotary=self.rotary,
use_cm=self.use_cm,
)
)
self.seqTransDecoder = DecoderLayerStack(decoderstack)
self.seqTransDecoder.apply(init_weight)
self.final_layer = nn.Linear(latent_dim, self.nfeats)
self.final_layer.apply(init_weight)
def _build_single_pose_conv(self, nfeats: int) -> nn.ModuleList:
post_pose_layers = torch.nn.ModuleList(
[
torch.nn.Conv1d(nfeats, max(256, nfeats), kernel_size=3, dilation=1),
torch.nn.Conv1d(max(256, nfeats), nfeats, kernel_size=3, dilation=2),
torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=3),
torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=1),
torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=2),
torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=3),
]
)
return post_pose_layers
def _run_single_pose_conv(self, output: torch.Tensor) -> torch.Tensor:
output = torch.nn.functional.pad(output, pad=[self.receptive_field - 1, 0])
for _, layer in enumerate(self.post_pose_layers):
y = torch.nn.functional.leaky_relu(layer(output), negative_slope=0.2)
if self.split_type == "train":
y = torch.nn.functional.dropout(y, 0.2)
if output.shape[1] == y.shape[1]:
output = (output[:, :, -y.shape[-1] :] + y) / 2.0 # skip connection
else:
output = y
return output
def setup_guide_models(self, args, latent_dim: int, key_feature_dim: int) -> None:
# set up conditioning info
max_keyframe_len = len(list(range(self.seq_len))[:: self.step])
self.null_pose_embed = nn.Parameter(
torch.randn(1, max_keyframe_len, latent_dim)
)
prGreen(f"using keyframes: {self.null_pose_embed.shape}")
self.frame_cond_projection = nn.Linear(key_feature_dim, latent_dim)
self.frame_norm_cond = nn.LayerNorm(latent_dim)
# for test time set up keyframe transformer
self.resume_trans = None
if self.split_type == "test":
if hasattr(args, "resume_trans") and args.resume_trans is not None:
self.resume_trans = args.resume_trans
self.setup_guide_predictor(args.resume_trans)
else:
prRed("not using transformer, just using ground truth")
def setup_guide_predictor(self, cp_path: str) -> None:
cp_dir = cp_path.split("checkpoints/iter-")[0]
with open(f"{cp_dir}/args.json") as f:
trans_args = json.load(f)
# set up tokenizer based on trans_arg load point
self.tokenizer = setup_tokenizer(trans_args["resume_pth"])
# set up transformer
self.transformer = GuideTransformer(
tokens=self.tokenizer.n_clusters,
num_layers=trans_args["layers"],
dim=trans_args["dim"],
emb_len=1998,
num_audio_layers=trans_args["num_audio_layers"],
)
for param in self.transformer.parameters():
param.requires_grad = False
prGreen("loading TRANSFORMER checkpoint from {}".format(cp_path))
cp = torch.load(cp_path)
missing_keys, unexpected_keys = self.transformer.load_state_dict(
cp["model_state_dict"], strict=False
)
assert len(missing_keys) == 0, missing_keys
assert len(unexpected_keys) == 0, unexpected_keys
def setup_audio_models(self) -> None:
self.audio_model, self.audio_resampler = setup_lip_regressor()
def setup_lip_models(self) -> None:
self.lip_model = Audio2LipRegressionTransformer()
cp_path = "./assets/iter-0200000.pt"
cp = torch.load(cp_path, map_location=torch.device(self.device))
self.lip_model.load_state_dict(cp["model_state_dict"])
for param in self.lip_model.parameters():
param.requires_grad = False
prGreen(f"adding lip conditioning {cp_path}")
def parameters_w_grad(self):
return [p for p in self.parameters() if p.requires_grad]
def encode_audio(self, raw_audio: torch.Tensor) -> torch.Tensor:
device = next(self.parameters()).device
a0 = self.audio_resampler(raw_audio[:, :, 0].to(device))
a1 = self.audio_resampler(raw_audio[:, :, 1].to(device))
with torch.no_grad():
z0 = self.audio_model.feature_extractor(a0)
z1 = self.audio_model.feature_extractor(a1)
emb = torch.cat((z0, z1), axis=1).permute(0, 2, 1)
return emb
def encode_lip(self, audio: torch.Tensor, cond_embed: torch.Tensor) -> torch.Tensor:
reshaped_audio = audio.reshape((audio.shape[0], -1, 1600, 2))[..., 0]
# processes 4 seconds at a time
B, T, _ = reshaped_audio.shape
lip_cond = torch.zeros(
(audio.shape[0], T, 338, 3),
device=audio.device,
dtype=audio.dtype,
)
for i in range(0, T, 120):
lip_cond[:, i : i + 120, ...] = self.lip_model(
reshaped_audio[:, i : i + 120, ...]
)
lip_cond = lip_cond.permute(0, 2, 3, 1).reshape((B, 338 * 3, -1))
lip_cond = torch.nn.functional.interpolate(
lip_cond, size=cond_embed.shape[1], mode="nearest-exact"
).permute(0, 2, 1)
cond_embed = torch.cat((cond_embed, lip_cond), dim=-1)
return cond_embed
def encode_keyframes(
self, y: torch.Tensor, cond_drop_prob: float, batch_size: int
) -> torch.Tensor:
pred = y["keyframes"]
new_mask = y["mask"][..., :: self.step].squeeze((1, 2))
pred[~new_mask] = 0.0 # pad the unknown
pose_hidden = self.frame_cond_projection(pred.detach().clone().cuda())
pose_embed = self.abs_pos_encoding(pose_hidden)
pose_tokens = self.frame_norm_cond(pose_embed)
# do conditional dropout for guide poses
key_cond_drop_prob = cond_drop_prob
keep_mask_pose = prob_mask_like(
(batch_size,), 1 - key_cond_drop_prob, device=pose_tokens.device
)
keep_mask_pose_embed = rearrange(keep_mask_pose, "b -> b 1 1")
null_pose_embed = self.null_pose_embed.to(pose_tokens.dtype)
pose_tokens = torch.where(
keep_mask_pose_embed,
pose_tokens,
null_pose_embed[:, : pose_tokens.shape[1], :],
)
return pose_tokens
def forward(
self,
x: torch.Tensor,
times: torch.Tensor,
y: Optional[torch.Tensor] = None,
cond_drop_prob: float = 0.0,
) -> torch.Tensor:
if x.dim() == 4:
x = x.permute(0, 3, 1, 2).squeeze(-1)
batch_size, device = x.shape[0], x.device
if self.cond_mode == "uncond":
cond_embed = torch.zeros(
(x.shape[0], x.shape[1], self.cond_feature_dim),
dtype=x.dtype,
device=x.device,
)
else:
cond_embed = y["audio"]
cond_embed = self.encode_audio(cond_embed)
if self.data_format == "face":
cond_embed = self.encode_lip(y["audio"], cond_embed)
pose_tokens = None
if self.data_format == "pose":
pose_tokens = self.encode_keyframes(y, cond_drop_prob, batch_size)
assert cond_embed is not None, "cond emb should not be none"
# process conditioning information
x = self.input_projection(x)
x = self.abs_pos_encoding(x)
audio_cond_drop_prob = cond_drop_prob
keep_mask = prob_mask_like(
(batch_size,), 1 - audio_cond_drop_prob, device=device
)
keep_mask_embed = rearrange(keep_mask, "b -> b 1 1")
keep_mask_hidden = rearrange(keep_mask, "b -> b 1")
cond_tokens = self.cond_projection(cond_embed)
cond_tokens = self.abs_pos_encoding(cond_tokens)
if self.data_format == "face":
cond_tokens = self.cond_encoder(cond_tokens)
null_cond_embed = self.null_cond_embed.to(cond_tokens.dtype)
cond_tokens = torch.where(
keep_mask_embed, cond_tokens, null_cond_embed[:, : cond_tokens.shape[1], :]
)
mean_pooled_cond_tokens = cond_tokens.mean(dim=-2)
cond_hidden = self.non_attn_cond_projection(mean_pooled_cond_tokens)
# create t conditioning
t_hidden = self.time_mlp(times)
t = self.to_time_cond(t_hidden)
t_tokens = self.to_time_tokens(t_hidden)
null_cond_hidden = self.null_cond_hidden.to(t.dtype)
cond_hidden = torch.where(keep_mask_hidden, cond_hidden, null_cond_hidden)
t += cond_hidden
# cross-attention conditioning
c = torch.cat((cond_tokens, t_tokens), dim=-2)
cond_tokens = self.norm_cond(c)
# Pass through the transformer decoder
output = self.seqTransDecoder(x, cond_tokens, t, memory2=pose_tokens)
output = self.final_layer(output)
if self.data_format == "pose":
output = output.permute(0, 2, 1)
output = self._run_single_pose_conv(output)
output = self.final_conv(output)
output = output.permute(0, 2, 1)
return output