File size: 15,850 Bytes
66b7c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

import json
from typing import Callable, Optional

import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Rearrange

from model.guide import GuideTransformer
from model.modules.audio_encoder import Wav2VecEncoder
from model.modules.rotary_embedding_torch import RotaryEmbedding
from model.modules.transformer_modules import (
    DecoderLayerStack,
    FiLMTransformerDecoderLayer,
    RegressionTransformer,
    TransformerEncoderLayerRotary,
)
from model.utils import (
    init_weight,
    PositionalEncoding,
    prob_mask_like,
    setup_lip_regressor,
    SinusoidalPosEmb,
)
from model.vqvae import setup_tokenizer
from torch.nn import functional as F
from utils.misc import prGreen, prRed


class Audio2LipRegressionTransformer(torch.nn.Module):
    def __init__(
        self,
        n_vertices: int = 338,
        causal: bool = False,
        train_wav2vec: bool = False,
        transformer_encoder_layers: int = 2,
        transformer_decoder_layers: int = 4,
    ):
        super().__init__()
        self.n_vertices = n_vertices

        self.audio_encoder = Wav2VecEncoder()
        if not train_wav2vec:
            self.audio_encoder.eval()
            for param in self.audio_encoder.parameters():
                param.requires_grad = False

        self.regression_model = RegressionTransformer(
            transformer_encoder_layers=transformer_encoder_layers,
            transformer_decoder_layers=transformer_decoder_layers,
            d_model=512,
            d_cond=512,
            num_heads=4,
            causal=causal,
        )
        self.project_output = torch.nn.Linear(512, self.n_vertices * 3)

    def forward(self, audio):
        """
        :param audio: tensor of shape B x T x 1600
        :return: tensor of shape B x T x n_vertices x 3 containing reconstructed lip geometry
        """
        B, T = audio.shape[0], audio.shape[1]

        cond = self.audio_encoder(audio)

        x = torch.zeros(B, T, 512, device=audio.device)
        x = self.regression_model(x, cond)
        x = self.project_output(x)

        verts = x.view(B, T, self.n_vertices, 3)
        return verts


class FiLMTransformer(nn.Module):
    def __init__(
        self,
        args,
        nfeats: int,
        latent_dim: int = 512,
        ff_size: int = 1024,
        num_layers: int = 4,
        num_heads: int = 4,
        dropout: float = 0.1,
        cond_feature_dim: int = 4800,
        activation: Callable[[torch.Tensor], torch.Tensor] = F.gelu,
        use_rotary: bool = True,
        cond_mode: str = "audio",
        split_type: str = "train",
        device: str = "cuda",
        **kwargs,
    ) -> None:
        super().__init__()
        self.nfeats = nfeats
        self.cond_mode = cond_mode
        self.cond_feature_dim = cond_feature_dim
        self.add_frame_cond = args.add_frame_cond
        self.data_format = args.data_format
        self.split_type = split_type
        self.device = device

        # positional embeddings
        self.rotary = None
        self.abs_pos_encoding = nn.Identity()
        # if rotary, replace absolute embedding with a rotary embedding instance (absolute becomes an identity)
        if use_rotary:
            self.rotary = RotaryEmbedding(dim=latent_dim)
        else:
            self.abs_pos_encoding = PositionalEncoding(
                latent_dim, dropout, batch_first=True
            )

        # time embedding processing
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(latent_dim),
            nn.Linear(latent_dim, latent_dim * 4),
            nn.Mish(),
        )
        self.to_time_cond = nn.Sequential(
            nn.Linear(latent_dim * 4, latent_dim),
        )
        self.to_time_tokens = nn.Sequential(
            nn.Linear(latent_dim * 4, latent_dim * 2),
            Rearrange("b (r d) -> b r d", r=2),
        )

        # null embeddings for guidance dropout
        self.seq_len = args.max_seq_length
        emb_len = 1998  # hardcoded for now
        self.null_cond_embed = nn.Parameter(torch.randn(1, emb_len, latent_dim))
        self.null_cond_hidden = nn.Parameter(torch.randn(1, latent_dim))
        self.norm_cond = nn.LayerNorm(latent_dim)
        self.setup_audio_models()

        # set up pose/face specific parts of the model
        self.input_projection = nn.Linear(self.nfeats, latent_dim)
        if self.data_format == "pose":
            cond_feature_dim = 1024
            key_feature_dim = 104
            self.step = 30
            self.use_cm = True
            self.setup_guide_models(args, latent_dim, key_feature_dim)
            self.post_pose_layers = self._build_single_pose_conv(self.nfeats)
            self.post_pose_layers.apply(init_weight)
            self.final_conv = torch.nn.Conv1d(self.nfeats, self.nfeats, kernel_size=1)
            self.receptive_field = 25
        elif self.data_format == "face":
            self.use_cm = False
            cond_feature_dim = 1024 + 1014
            self.setup_lip_models()
            self.cond_encoder = nn.Sequential()
            for _ in range(2):
                self.cond_encoder.append(
                    TransformerEncoderLayerRotary(
                        d_model=latent_dim,
                        nhead=num_heads,
                        dim_feedforward=ff_size,
                        dropout=dropout,
                        activation=activation,
                        batch_first=True,
                        rotary=self.rotary,
                    )
                )
            self.cond_encoder.apply(init_weight)

        self.cond_projection = nn.Linear(cond_feature_dim, latent_dim)
        self.non_attn_cond_projection = nn.Sequential(
            nn.LayerNorm(latent_dim),
            nn.Linear(latent_dim, latent_dim),
            nn.SiLU(),
            nn.Linear(latent_dim, latent_dim),
        )

        # decoder
        decoderstack = nn.ModuleList([])
        for _ in range(num_layers):
            decoderstack.append(
                FiLMTransformerDecoderLayer(
                    latent_dim,
                    num_heads,
                    dim_feedforward=ff_size,
                    dropout=dropout,
                    activation=activation,
                    batch_first=True,
                    rotary=self.rotary,
                    use_cm=self.use_cm,
                )
            )
        self.seqTransDecoder = DecoderLayerStack(decoderstack)
        self.seqTransDecoder.apply(init_weight)
        self.final_layer = nn.Linear(latent_dim, self.nfeats)
        self.final_layer.apply(init_weight)

    def _build_single_pose_conv(self, nfeats: int) -> nn.ModuleList:
        post_pose_layers = torch.nn.ModuleList(
            [
                torch.nn.Conv1d(nfeats, max(256, nfeats), kernel_size=3, dilation=1),
                torch.nn.Conv1d(max(256, nfeats), nfeats, kernel_size=3, dilation=2),
                torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=3),
                torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=1),
                torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=2),
                torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=3),
            ]
        )
        return post_pose_layers

    def _run_single_pose_conv(self, output: torch.Tensor) -> torch.Tensor:
        output = torch.nn.functional.pad(output, pad=[self.receptive_field - 1, 0])
        for _, layer in enumerate(self.post_pose_layers):
            y = torch.nn.functional.leaky_relu(layer(output), negative_slope=0.2)
            if self.split_type == "train":
                y = torch.nn.functional.dropout(y, 0.2)
            if output.shape[1] == y.shape[1]:
                output = (output[:, :, -y.shape[-1] :] + y) / 2.0  # skip connection
            else:
                output = y
        return output

    def setup_guide_models(self, args, latent_dim: int, key_feature_dim: int) -> None:
        # set up conditioning info
        max_keyframe_len = len(list(range(self.seq_len))[:: self.step])
        self.null_pose_embed = nn.Parameter(
            torch.randn(1, max_keyframe_len, latent_dim)
        )
        prGreen(f"using keyframes: {self.null_pose_embed.shape}")
        self.frame_cond_projection = nn.Linear(key_feature_dim, latent_dim)
        self.frame_norm_cond = nn.LayerNorm(latent_dim)
        # for test time set up keyframe transformer
        self.resume_trans = None
        if self.split_type == "test":
            if hasattr(args, "resume_trans") and args.resume_trans is not None:
                self.resume_trans = args.resume_trans
                self.setup_guide_predictor(args.resume_trans)
            else:
                prRed("not using transformer, just using ground truth")

    def setup_guide_predictor(self, cp_path: str) -> None:
        cp_dir = cp_path.split("checkpoints/iter-")[0]
        with open(f"{cp_dir}/args.json") as f:
            trans_args = json.load(f)

        # set up tokenizer based on trans_arg load point
        self.tokenizer = setup_tokenizer(trans_args["resume_pth"])

        # set up transformer
        self.transformer = GuideTransformer(
            tokens=self.tokenizer.n_clusters,
            num_layers=trans_args["layers"],
            dim=trans_args["dim"],
            emb_len=1998,
            num_audio_layers=trans_args["num_audio_layers"],
        )
        for param in self.transformer.parameters():
            param.requires_grad = False
        prGreen("loading TRANSFORMER checkpoint from {}".format(cp_path))
        cp = torch.load(cp_path)
        missing_keys, unexpected_keys = self.transformer.load_state_dict(
            cp["model_state_dict"], strict=False
        )
        assert len(missing_keys) == 0, missing_keys
        assert len(unexpected_keys) == 0, unexpected_keys

    def setup_audio_models(self) -> None:
        self.audio_model, self.audio_resampler = setup_lip_regressor()

    def setup_lip_models(self) -> None:
        self.lip_model = Audio2LipRegressionTransformer()
        cp_path = "./assets/iter-0200000.pt"
        cp = torch.load(cp_path, map_location=torch.device(self.device))
        self.lip_model.load_state_dict(cp["model_state_dict"])
        for param in self.lip_model.parameters():
            param.requires_grad = False
        prGreen(f"adding lip conditioning {cp_path}")

    def parameters_w_grad(self):
        return [p for p in self.parameters() if p.requires_grad]

    def encode_audio(self, raw_audio: torch.Tensor) -> torch.Tensor:
        device = next(self.parameters()).device
        a0 = self.audio_resampler(raw_audio[:, :, 0].to(device))
        a1 = self.audio_resampler(raw_audio[:, :, 1].to(device))
        with torch.no_grad():
            z0 = self.audio_model.feature_extractor(a0)
            z1 = self.audio_model.feature_extractor(a1)
            emb = torch.cat((z0, z1), axis=1).permute(0, 2, 1)
        return emb

    def encode_lip(self, audio: torch.Tensor, cond_embed: torch.Tensor) -> torch.Tensor:
        reshaped_audio = audio.reshape((audio.shape[0], -1, 1600, 2))[..., 0]
        # processes 4 seconds at a time
        B, T, _ = reshaped_audio.shape
        lip_cond = torch.zeros(
            (audio.shape[0], T, 338, 3),
            device=audio.device,
            dtype=audio.dtype,
        )
        for i in range(0, T, 120):
            lip_cond[:, i : i + 120, ...] = self.lip_model(
                reshaped_audio[:, i : i + 120, ...]
            )
        lip_cond = lip_cond.permute(0, 2, 3, 1).reshape((B, 338 * 3, -1))
        lip_cond = torch.nn.functional.interpolate(
            lip_cond, size=cond_embed.shape[1], mode="nearest-exact"
        ).permute(0, 2, 1)
        cond_embed = torch.cat((cond_embed, lip_cond), dim=-1)
        return cond_embed

    def encode_keyframes(
        self, y: torch.Tensor, cond_drop_prob: float, batch_size: int
    ) -> torch.Tensor:
        pred = y["keyframes"]
        new_mask = y["mask"][..., :: self.step].squeeze((1, 2))
        pred[~new_mask] = 0.0  # pad the unknown
        pose_hidden = self.frame_cond_projection(pred.detach().clone().cuda())
        pose_embed = self.abs_pos_encoding(pose_hidden)
        pose_tokens = self.frame_norm_cond(pose_embed)
        # do conditional dropout for guide poses
        key_cond_drop_prob = cond_drop_prob
        keep_mask_pose = prob_mask_like(
            (batch_size,), 1 - key_cond_drop_prob, device=pose_tokens.device
        )
        keep_mask_pose_embed = rearrange(keep_mask_pose, "b -> b 1 1")
        null_pose_embed = self.null_pose_embed.to(pose_tokens.dtype)
        pose_tokens = torch.where(
            keep_mask_pose_embed,
            pose_tokens,
            null_pose_embed[:, : pose_tokens.shape[1], :],
        )
        return pose_tokens

    def forward(
        self,
        x: torch.Tensor,
        times: torch.Tensor,
        y: Optional[torch.Tensor] = None,
        cond_drop_prob: float = 0.0,
    ) -> torch.Tensor:
        if x.dim() == 4:
            x = x.permute(0, 3, 1, 2).squeeze(-1)
        batch_size, device = x.shape[0], x.device
        if self.cond_mode == "uncond":
            cond_embed = torch.zeros(
                (x.shape[0], x.shape[1], self.cond_feature_dim),
                dtype=x.dtype,
                device=x.device,
            )
        else:
            cond_embed = y["audio"]
            cond_embed = self.encode_audio(cond_embed)
            if self.data_format == "face":
                cond_embed = self.encode_lip(y["audio"], cond_embed)
                pose_tokens = None
            if self.data_format == "pose":
                pose_tokens = self.encode_keyframes(y, cond_drop_prob, batch_size)
        assert cond_embed is not None, "cond emb should not be none"
        # process conditioning information
        x = self.input_projection(x)
        x = self.abs_pos_encoding(x)
        audio_cond_drop_prob = cond_drop_prob
        keep_mask = prob_mask_like(
            (batch_size,), 1 - audio_cond_drop_prob, device=device
        )
        keep_mask_embed = rearrange(keep_mask, "b -> b 1 1")
        keep_mask_hidden = rearrange(keep_mask, "b -> b 1")
        cond_tokens = self.cond_projection(cond_embed)
        cond_tokens = self.abs_pos_encoding(cond_tokens)
        if self.data_format == "face":
            cond_tokens = self.cond_encoder(cond_tokens)
        null_cond_embed = self.null_cond_embed.to(cond_tokens.dtype)
        cond_tokens = torch.where(
            keep_mask_embed, cond_tokens, null_cond_embed[:, : cond_tokens.shape[1], :]
        )
        mean_pooled_cond_tokens = cond_tokens.mean(dim=-2)
        cond_hidden = self.non_attn_cond_projection(mean_pooled_cond_tokens)

        # create t conditioning
        t_hidden = self.time_mlp(times)
        t = self.to_time_cond(t_hidden)
        t_tokens = self.to_time_tokens(t_hidden)
        null_cond_hidden = self.null_cond_hidden.to(t.dtype)
        cond_hidden = torch.where(keep_mask_hidden, cond_hidden, null_cond_hidden)
        t += cond_hidden

        # cross-attention conditioning
        c = torch.cat((cond_tokens, t_tokens), dim=-2)
        cond_tokens = self.norm_cond(c)

        # Pass through the transformer decoder
        output = self.seqTransDecoder(x, cond_tokens, t, memory2=pose_tokens)
        output = self.final_layer(output)
        if self.data_format == "pose":
            output = output.permute(0, 2, 1)
            output = self._run_single_pose_conv(output)
            output = self.final_conv(output)
            output = output.permute(0, 2, 1)
        return output