Spaces:
Runtime error
Runtime error
File size: 15,850 Bytes
66b7c56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import json
from typing import Callable, Optional
import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Rearrange
from model.guide import GuideTransformer
from model.modules.audio_encoder import Wav2VecEncoder
from model.modules.rotary_embedding_torch import RotaryEmbedding
from model.modules.transformer_modules import (
DecoderLayerStack,
FiLMTransformerDecoderLayer,
RegressionTransformer,
TransformerEncoderLayerRotary,
)
from model.utils import (
init_weight,
PositionalEncoding,
prob_mask_like,
setup_lip_regressor,
SinusoidalPosEmb,
)
from model.vqvae import setup_tokenizer
from torch.nn import functional as F
from utils.misc import prGreen, prRed
class Audio2LipRegressionTransformer(torch.nn.Module):
def __init__(
self,
n_vertices: int = 338,
causal: bool = False,
train_wav2vec: bool = False,
transformer_encoder_layers: int = 2,
transformer_decoder_layers: int = 4,
):
super().__init__()
self.n_vertices = n_vertices
self.audio_encoder = Wav2VecEncoder()
if not train_wav2vec:
self.audio_encoder.eval()
for param in self.audio_encoder.parameters():
param.requires_grad = False
self.regression_model = RegressionTransformer(
transformer_encoder_layers=transformer_encoder_layers,
transformer_decoder_layers=transformer_decoder_layers,
d_model=512,
d_cond=512,
num_heads=4,
causal=causal,
)
self.project_output = torch.nn.Linear(512, self.n_vertices * 3)
def forward(self, audio):
"""
:param audio: tensor of shape B x T x 1600
:return: tensor of shape B x T x n_vertices x 3 containing reconstructed lip geometry
"""
B, T = audio.shape[0], audio.shape[1]
cond = self.audio_encoder(audio)
x = torch.zeros(B, T, 512, device=audio.device)
x = self.regression_model(x, cond)
x = self.project_output(x)
verts = x.view(B, T, self.n_vertices, 3)
return verts
class FiLMTransformer(nn.Module):
def __init__(
self,
args,
nfeats: int,
latent_dim: int = 512,
ff_size: int = 1024,
num_layers: int = 4,
num_heads: int = 4,
dropout: float = 0.1,
cond_feature_dim: int = 4800,
activation: Callable[[torch.Tensor], torch.Tensor] = F.gelu,
use_rotary: bool = True,
cond_mode: str = "audio",
split_type: str = "train",
device: str = "cuda",
**kwargs,
) -> None:
super().__init__()
self.nfeats = nfeats
self.cond_mode = cond_mode
self.cond_feature_dim = cond_feature_dim
self.add_frame_cond = args.add_frame_cond
self.data_format = args.data_format
self.split_type = split_type
self.device = device
# positional embeddings
self.rotary = None
self.abs_pos_encoding = nn.Identity()
# if rotary, replace absolute embedding with a rotary embedding instance (absolute becomes an identity)
if use_rotary:
self.rotary = RotaryEmbedding(dim=latent_dim)
else:
self.abs_pos_encoding = PositionalEncoding(
latent_dim, dropout, batch_first=True
)
# time embedding processing
self.time_mlp = nn.Sequential(
SinusoidalPosEmb(latent_dim),
nn.Linear(latent_dim, latent_dim * 4),
nn.Mish(),
)
self.to_time_cond = nn.Sequential(
nn.Linear(latent_dim * 4, latent_dim),
)
self.to_time_tokens = nn.Sequential(
nn.Linear(latent_dim * 4, latent_dim * 2),
Rearrange("b (r d) -> b r d", r=2),
)
# null embeddings for guidance dropout
self.seq_len = args.max_seq_length
emb_len = 1998 # hardcoded for now
self.null_cond_embed = nn.Parameter(torch.randn(1, emb_len, latent_dim))
self.null_cond_hidden = nn.Parameter(torch.randn(1, latent_dim))
self.norm_cond = nn.LayerNorm(latent_dim)
self.setup_audio_models()
# set up pose/face specific parts of the model
self.input_projection = nn.Linear(self.nfeats, latent_dim)
if self.data_format == "pose":
cond_feature_dim = 1024
key_feature_dim = 104
self.step = 30
self.use_cm = True
self.setup_guide_models(args, latent_dim, key_feature_dim)
self.post_pose_layers = self._build_single_pose_conv(self.nfeats)
self.post_pose_layers.apply(init_weight)
self.final_conv = torch.nn.Conv1d(self.nfeats, self.nfeats, kernel_size=1)
self.receptive_field = 25
elif self.data_format == "face":
self.use_cm = False
cond_feature_dim = 1024 + 1014
self.setup_lip_models()
self.cond_encoder = nn.Sequential()
for _ in range(2):
self.cond_encoder.append(
TransformerEncoderLayerRotary(
d_model=latent_dim,
nhead=num_heads,
dim_feedforward=ff_size,
dropout=dropout,
activation=activation,
batch_first=True,
rotary=self.rotary,
)
)
self.cond_encoder.apply(init_weight)
self.cond_projection = nn.Linear(cond_feature_dim, latent_dim)
self.non_attn_cond_projection = nn.Sequential(
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, latent_dim),
nn.SiLU(),
nn.Linear(latent_dim, latent_dim),
)
# decoder
decoderstack = nn.ModuleList([])
for _ in range(num_layers):
decoderstack.append(
FiLMTransformerDecoderLayer(
latent_dim,
num_heads,
dim_feedforward=ff_size,
dropout=dropout,
activation=activation,
batch_first=True,
rotary=self.rotary,
use_cm=self.use_cm,
)
)
self.seqTransDecoder = DecoderLayerStack(decoderstack)
self.seqTransDecoder.apply(init_weight)
self.final_layer = nn.Linear(latent_dim, self.nfeats)
self.final_layer.apply(init_weight)
def _build_single_pose_conv(self, nfeats: int) -> nn.ModuleList:
post_pose_layers = torch.nn.ModuleList(
[
torch.nn.Conv1d(nfeats, max(256, nfeats), kernel_size=3, dilation=1),
torch.nn.Conv1d(max(256, nfeats), nfeats, kernel_size=3, dilation=2),
torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=3),
torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=1),
torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=2),
torch.nn.Conv1d(nfeats, nfeats, kernel_size=3, dilation=3),
]
)
return post_pose_layers
def _run_single_pose_conv(self, output: torch.Tensor) -> torch.Tensor:
output = torch.nn.functional.pad(output, pad=[self.receptive_field - 1, 0])
for _, layer in enumerate(self.post_pose_layers):
y = torch.nn.functional.leaky_relu(layer(output), negative_slope=0.2)
if self.split_type == "train":
y = torch.nn.functional.dropout(y, 0.2)
if output.shape[1] == y.shape[1]:
output = (output[:, :, -y.shape[-1] :] + y) / 2.0 # skip connection
else:
output = y
return output
def setup_guide_models(self, args, latent_dim: int, key_feature_dim: int) -> None:
# set up conditioning info
max_keyframe_len = len(list(range(self.seq_len))[:: self.step])
self.null_pose_embed = nn.Parameter(
torch.randn(1, max_keyframe_len, latent_dim)
)
prGreen(f"using keyframes: {self.null_pose_embed.shape}")
self.frame_cond_projection = nn.Linear(key_feature_dim, latent_dim)
self.frame_norm_cond = nn.LayerNorm(latent_dim)
# for test time set up keyframe transformer
self.resume_trans = None
if self.split_type == "test":
if hasattr(args, "resume_trans") and args.resume_trans is not None:
self.resume_trans = args.resume_trans
self.setup_guide_predictor(args.resume_trans)
else:
prRed("not using transformer, just using ground truth")
def setup_guide_predictor(self, cp_path: str) -> None:
cp_dir = cp_path.split("checkpoints/iter-")[0]
with open(f"{cp_dir}/args.json") as f:
trans_args = json.load(f)
# set up tokenizer based on trans_arg load point
self.tokenizer = setup_tokenizer(trans_args["resume_pth"])
# set up transformer
self.transformer = GuideTransformer(
tokens=self.tokenizer.n_clusters,
num_layers=trans_args["layers"],
dim=trans_args["dim"],
emb_len=1998,
num_audio_layers=trans_args["num_audio_layers"],
)
for param in self.transformer.parameters():
param.requires_grad = False
prGreen("loading TRANSFORMER checkpoint from {}".format(cp_path))
cp = torch.load(cp_path)
missing_keys, unexpected_keys = self.transformer.load_state_dict(
cp["model_state_dict"], strict=False
)
assert len(missing_keys) == 0, missing_keys
assert len(unexpected_keys) == 0, unexpected_keys
def setup_audio_models(self) -> None:
self.audio_model, self.audio_resampler = setup_lip_regressor()
def setup_lip_models(self) -> None:
self.lip_model = Audio2LipRegressionTransformer()
cp_path = "./assets/iter-0200000.pt"
cp = torch.load(cp_path, map_location=torch.device(self.device))
self.lip_model.load_state_dict(cp["model_state_dict"])
for param in self.lip_model.parameters():
param.requires_grad = False
prGreen(f"adding lip conditioning {cp_path}")
def parameters_w_grad(self):
return [p for p in self.parameters() if p.requires_grad]
def encode_audio(self, raw_audio: torch.Tensor) -> torch.Tensor:
device = next(self.parameters()).device
a0 = self.audio_resampler(raw_audio[:, :, 0].to(device))
a1 = self.audio_resampler(raw_audio[:, :, 1].to(device))
with torch.no_grad():
z0 = self.audio_model.feature_extractor(a0)
z1 = self.audio_model.feature_extractor(a1)
emb = torch.cat((z0, z1), axis=1).permute(0, 2, 1)
return emb
def encode_lip(self, audio: torch.Tensor, cond_embed: torch.Tensor) -> torch.Tensor:
reshaped_audio = audio.reshape((audio.shape[0], -1, 1600, 2))[..., 0]
# processes 4 seconds at a time
B, T, _ = reshaped_audio.shape
lip_cond = torch.zeros(
(audio.shape[0], T, 338, 3),
device=audio.device,
dtype=audio.dtype,
)
for i in range(0, T, 120):
lip_cond[:, i : i + 120, ...] = self.lip_model(
reshaped_audio[:, i : i + 120, ...]
)
lip_cond = lip_cond.permute(0, 2, 3, 1).reshape((B, 338 * 3, -1))
lip_cond = torch.nn.functional.interpolate(
lip_cond, size=cond_embed.shape[1], mode="nearest-exact"
).permute(0, 2, 1)
cond_embed = torch.cat((cond_embed, lip_cond), dim=-1)
return cond_embed
def encode_keyframes(
self, y: torch.Tensor, cond_drop_prob: float, batch_size: int
) -> torch.Tensor:
pred = y["keyframes"]
new_mask = y["mask"][..., :: self.step].squeeze((1, 2))
pred[~new_mask] = 0.0 # pad the unknown
pose_hidden = self.frame_cond_projection(pred.detach().clone().cuda())
pose_embed = self.abs_pos_encoding(pose_hidden)
pose_tokens = self.frame_norm_cond(pose_embed)
# do conditional dropout for guide poses
key_cond_drop_prob = cond_drop_prob
keep_mask_pose = prob_mask_like(
(batch_size,), 1 - key_cond_drop_prob, device=pose_tokens.device
)
keep_mask_pose_embed = rearrange(keep_mask_pose, "b -> b 1 1")
null_pose_embed = self.null_pose_embed.to(pose_tokens.dtype)
pose_tokens = torch.where(
keep_mask_pose_embed,
pose_tokens,
null_pose_embed[:, : pose_tokens.shape[1], :],
)
return pose_tokens
def forward(
self,
x: torch.Tensor,
times: torch.Tensor,
y: Optional[torch.Tensor] = None,
cond_drop_prob: float = 0.0,
) -> torch.Tensor:
if x.dim() == 4:
x = x.permute(0, 3, 1, 2).squeeze(-1)
batch_size, device = x.shape[0], x.device
if self.cond_mode == "uncond":
cond_embed = torch.zeros(
(x.shape[0], x.shape[1], self.cond_feature_dim),
dtype=x.dtype,
device=x.device,
)
else:
cond_embed = y["audio"]
cond_embed = self.encode_audio(cond_embed)
if self.data_format == "face":
cond_embed = self.encode_lip(y["audio"], cond_embed)
pose_tokens = None
if self.data_format == "pose":
pose_tokens = self.encode_keyframes(y, cond_drop_prob, batch_size)
assert cond_embed is not None, "cond emb should not be none"
# process conditioning information
x = self.input_projection(x)
x = self.abs_pos_encoding(x)
audio_cond_drop_prob = cond_drop_prob
keep_mask = prob_mask_like(
(batch_size,), 1 - audio_cond_drop_prob, device=device
)
keep_mask_embed = rearrange(keep_mask, "b -> b 1 1")
keep_mask_hidden = rearrange(keep_mask, "b -> b 1")
cond_tokens = self.cond_projection(cond_embed)
cond_tokens = self.abs_pos_encoding(cond_tokens)
if self.data_format == "face":
cond_tokens = self.cond_encoder(cond_tokens)
null_cond_embed = self.null_cond_embed.to(cond_tokens.dtype)
cond_tokens = torch.where(
keep_mask_embed, cond_tokens, null_cond_embed[:, : cond_tokens.shape[1], :]
)
mean_pooled_cond_tokens = cond_tokens.mean(dim=-2)
cond_hidden = self.non_attn_cond_projection(mean_pooled_cond_tokens)
# create t conditioning
t_hidden = self.time_mlp(times)
t = self.to_time_cond(t_hidden)
t_tokens = self.to_time_tokens(t_hidden)
null_cond_hidden = self.null_cond_hidden.to(t.dtype)
cond_hidden = torch.where(keep_mask_hidden, cond_hidden, null_cond_hidden)
t += cond_hidden
# cross-attention conditioning
c = torch.cat((cond_tokens, t_tokens), dim=-2)
cond_tokens = self.norm_cond(c)
# Pass through the transformer decoder
output = self.seqTransDecoder(x, cond_tokens, t, memory2=pose_tokens)
output = self.final_layer(output)
if self.data_format == "pose":
output = output.permute(0, 2, 1)
output = self._run_single_pose_conv(output)
output = self.final_conv(output)
output = output.permute(0, 2, 1)
return output
|