File size: 924 Bytes
ee0e2d0
 
 
 
57b35cc
74a4d84
 
ee0e2d0
 
 
 
 
 
 
 
 
 
74a4d84
 
 
ca4894c
74a4d84
ee0e2d0
23c21cf
ee0e2d0
 
 
 
 
 
 
74a4d84
ee0e2d0
 
74a4d84
ee0e2d0
 
 
74a4d84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import PIL.Image as Image
import gradio as gr
from ultralytics import ASSETS, YOLO

model = YOLO("best.pt")


def predict_image(img, conf_threshold, iou_threshold):
    results = model.predict(
        source=img,
        conf=conf_threshold,
        iou=iou_threshold,
        show_labels=True,
        show_conf=True,
        imgsz=640,
    )

    for r in results:
        im_array = r.plot()
        im = Image.fromarray(im_array[..., ::-1])

    return im


iface = gr.Interface(
    fn=predict_image,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
        gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
    ],
    outputs=gr.Image(type="pil", label="Result"),
    title="My Yield | 🌱",
    description="Estimate the amount of plants per year",

)

if __name__ == '__main__':
    iface.launch()