Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ import gradio as gr
|
|
3 |
from ultralytics import ASSETS, YOLO
|
4 |
|
5 |
model = YOLO("best.pt")
|
|
|
|
|
6 |
def predict_image(img, conf_threshold, iou_threshold):
|
7 |
results = model.predict(
|
8 |
source=img,
|
@@ -13,25 +15,13 @@ def predict_image(img, conf_threshold, iou_threshold):
|
|
13 |
imgsz=640,
|
14 |
)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
class_names = [results.names[i] for i in class_ids]
|
20 |
|
21 |
-
|
22 |
-
fruit_count = sum(1 for name in class_names if 'fruit' in name.lower()) # Adjust 'fruit' to the actual class name if needed
|
23 |
|
24 |
-
# Convert the result to an image and draw the count on it
|
25 |
-
im_array = results.render()[0]
|
26 |
-
im = Image.fromarray(im_array)
|
27 |
-
draw = ImageDraw.Draw(im)
|
28 |
-
text = f"Fruits detected: {fruit_count}"
|
29 |
-
text_size = draw.textsize(text)
|
30 |
-
draw.rectangle([(0, im.height - text_size[1]), (text_size[0], im.height)], fill="white")
|
31 |
-
draw.text((0, im.height - text_size[1]), text, fill="black")
|
32 |
|
33 |
-
return im
|
34 |
-
|
35 |
iface = gr.Interface(
|
36 |
fn=predict_image,
|
37 |
inputs=[
|
@@ -39,10 +29,11 @@ iface = gr.Interface(
|
|
39 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
40 |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
|
41 |
],
|
42 |
-
outputs=
|
43 |
title="My Yield | 🌱",
|
44 |
description="Estimate the amount of plants per year",
|
|
|
45 |
)
|
46 |
|
47 |
if __name__ == '__main__':
|
48 |
-
iface.launch()
|
|
|
3 |
from ultralytics import ASSETS, YOLO
|
4 |
|
5 |
model = YOLO("best.pt")
|
6 |
+
|
7 |
+
|
8 |
def predict_image(img, conf_threshold, iou_threshold):
|
9 |
results = model.predict(
|
10 |
source=img,
|
|
|
15 |
imgsz=640,
|
16 |
)
|
17 |
|
18 |
+
for r in results:
|
19 |
+
im_array = r.plot()
|
20 |
+
im = Image.fromarray(im_array[..., ::-1])
|
|
|
21 |
|
22 |
+
return im
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
25 |
iface = gr.Interface(
|
26 |
fn=predict_image,
|
27 |
inputs=[
|
|
|
29 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
30 |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
|
31 |
],
|
32 |
+
outputs=gr.Image(type="pil", label="Result"),
|
33 |
title="My Yield | 🌱",
|
34 |
description="Estimate the amount of plants per year",
|
35 |
+
|
36 |
)
|
37 |
|
38 |
if __name__ == '__main__':
|
39 |
+
iface.launch()
|