Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import time
|
5 |
+
import numpy as np
|
6 |
+
from ultralytics import YOLO
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Optimize CPU usage
|
10 |
+
torch.set_num_threads(8)
|
11 |
+
MODEL_DIR = "models"
|
12 |
+
|
13 |
+
stop_processing = False # Global flag to stop processing
|
14 |
+
|
15 |
+
def get_model_options():
|
16 |
+
models = {}
|
17 |
+
for root, dirs, files in os.walk(MODEL_DIR):
|
18 |
+
for file in files:
|
19 |
+
if file.endswith(".pt"):
|
20 |
+
model_name = os.path.basename(os.path.dirname(root))
|
21 |
+
models[model_name] = os.path.join(root, file)
|
22 |
+
return models
|
23 |
+
|
24 |
+
model_options = get_model_options()
|
25 |
+
|
26 |
+
def annotate_frame(frame, results):
|
27 |
+
for box in results[0].boxes:
|
28 |
+
xyxy = box.xyxy[0].numpy()
|
29 |
+
class_id = int(box.cls[0].item())
|
30 |
+
label = results[0].names[class_id]
|
31 |
+
|
32 |
+
start_point = (int(xyxy[0]), int(xyxy[1]))
|
33 |
+
end_point = (int(xyxy[2]), int(xyxy[3]))
|
34 |
+
color = (0, 255, 0)
|
35 |
+
thickness = 2
|
36 |
+
cv2.rectangle(frame, start_point, end_point, color, thickness)
|
37 |
+
|
38 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
39 |
+
font_scale = 0.5
|
40 |
+
font_thickness = 1
|
41 |
+
label_position = (int(xyxy[0]), int(xyxy[1] - 10))
|
42 |
+
cv2.putText(frame, label, label_position, font, font_scale, color, font_thickness)
|
43 |
+
return frame
|
44 |
+
|
45 |
+
def process_image(model_name, image, confidence_threshold, iou_threshold):
|
46 |
+
model_path = model_options[model_name]
|
47 |
+
model = YOLO(model_path).to('cpu')
|
48 |
+
|
49 |
+
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
50 |
+
with torch.inference_mode():
|
51 |
+
results = model(frame, conf=confidence_threshold, iou=iou_threshold)
|
52 |
+
annotated_frame = annotate_frame(frame, results)
|
53 |
+
annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
|
54 |
+
return annotated_frame, "N/A"
|
55 |
+
|
56 |
+
def run_inference(mode, model_name, image, video, confidence_threshold, iou_threshold):
|
57 |
+
global stop_processing
|
58 |
+
stop_processing = False # Reset stop flag at the start
|
59 |
+
|
60 |
+
if mode == "Image":
|
61 |
+
if image is None:
|
62 |
+
yield None, None, "Please upload an image."
|
63 |
+
return
|
64 |
+
annotated_img, fps = process_image(model_name, image, confidence_threshold, iou_threshold)
|
65 |
+
yield annotated_img, None, fps
|
66 |
+
else:
|
67 |
+
if video is None:
|
68 |
+
yield None, None, "Please upload a video."
|
69 |
+
return
|
70 |
+
|
71 |
+
model_path = model_options[model_name]
|
72 |
+
model = YOLO(model_path).to('cpu')
|
73 |
+
cap = cv2.VideoCapture(video)
|
74 |
+
|
75 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
76 |
+
if frame_count <= 0:
|
77 |
+
frame_count = 1
|
78 |
+
|
79 |
+
output_frames = []
|
80 |
+
fps_list = []
|
81 |
+
processed_count = 0
|
82 |
+
|
83 |
+
while not stop_processing:
|
84 |
+
ret, frame = cap.read()
|
85 |
+
if not ret:
|
86 |
+
break
|
87 |
+
|
88 |
+
start_time = time.time()
|
89 |
+
with torch.inference_mode():
|
90 |
+
results = model(frame, conf=confidence_threshold, iou=iou_threshold)
|
91 |
+
|
92 |
+
annotated_frame = annotate_frame(frame, results)
|
93 |
+
output_frames.append(annotated_frame)
|
94 |
+
|
95 |
+
fps_val = 1 / (time.time() - start_time)
|
96 |
+
fps_list.append(fps_val)
|
97 |
+
|
98 |
+
processed_count += 1
|
99 |
+
progress_fraction = processed_count / frame_count
|
100 |
+
|
101 |
+
# Yield progress every few frames
|
102 |
+
if processed_count % 5 == 0:
|
103 |
+
yield None, None, f"Processing... {progress_fraction * 100:.2f}%"
|
104 |
+
|
105 |
+
if stop_processing:
|
106 |
+
yield None, None, "Processing canceled."
|
107 |
+
return
|
108 |
+
|
109 |
+
cap.release()
|
110 |
+
|
111 |
+
if len(output_frames) > 0 and not stop_processing:
|
112 |
+
avg_fps = sum(fps_list) / len(fps_list) if fps_list else 0
|
113 |
+
height, width, _ = output_frames[0].shape
|
114 |
+
output_video_path = "output.mp4"
|
115 |
+
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 30, (width, height))
|
116 |
+
for frame in output_frames:
|
117 |
+
out.write(frame)
|
118 |
+
out.release()
|
119 |
+
|
120 |
+
yield None, output_video_path, f"Average FPS: {avg_fps:.2f}"
|
121 |
+
elif not stop_processing:
|
122 |
+
yield None, None, "No frames processed."
|
123 |
+
|
124 |
+
def cancel_processing():
|
125 |
+
global stop_processing
|
126 |
+
stop_processing = True
|
127 |
+
return "Cancel signal sent."
|
128 |
+
|
129 |
+
def start_app():
|
130 |
+
model_names = list(model_options.keys())
|
131 |
+
|
132 |
+
with gr.Blocks() as app:
|
133 |
+
# **Instructional Message Added Here**
|
134 |
+
gr.Markdown("""
|
135 |
+
### Welcome to the YOLO Inference App!
|
136 |
+
**How to Use:**
|
137 |
+
1. **Select Mode:**
|
138 |
+
- Choose between **Image** or **Video** processing.
|
139 |
+
2. **Select Model:**
|
140 |
+
- Pick a pre-trained YOLO model from the dropdown menu.
|
141 |
+
3. **Upload Your File:**
|
142 |
+
- For **Image** mode, upload an image (e.g., `pothole.jpg`).
|
143 |
+
- For **Video** mode, upload a video (e.g., `potholeall.mp4` or `electric bus fire.mp4`).
|
144 |
+
4. **Adjust Thresholds:**
|
145 |
+
- **Confidence Threshold:** Determines the minimum confidence for detections.
|
146 |
+
- **IoU Threshold:** Determines the Intersection over Union threshold for non-maximum suppression.
|
147 |
+
5. **Start Processing:**
|
148 |
+
- Click on **Start Processing** to begin inference.
|
149 |
+
- You can cancel the processing at any time by clicking **Cancel Processing**.
|
150 |
+
**Example Files:**
|
151 |
+
- **Image:** `pothole.jpg`
|
152 |
+
- **Videos:** `potholeall.mp4`, `electric bus fire.mp4`
|
153 |
+
""")
|
154 |
+
|
155 |
+
gr.Markdown("## YOLO Inference (Image or Video) with Progress & Cancel")
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
mode = gr.Radio(["Image", "Video"], value="Image", label="Mode")
|
159 |
+
model_selector = gr.Dropdown(choices=model_names, label="Select Model", value=model_names[0])
|
160 |
+
|
161 |
+
image_input = gr.Image(label="Upload Image", visible=True)
|
162 |
+
video_input = gr.Video(label="Upload Video", visible=False)
|
163 |
+
|
164 |
+
confidence_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Confidence Threshold")
|
165 |
+
iou_slider = gr.Slider(0.1, 1.0, value=0.001, step=0.001, label="IoU Threshold")
|
166 |
+
|
167 |
+
annotated_image_output = gr.Image(label="Annotated Image", visible=True)
|
168 |
+
annotated_video_output = gr.Video(label="Output Video", visible=False)
|
169 |
+
fps_output = gr.Textbox(label="Status / Average FPS", interactive=False)
|
170 |
+
|
171 |
+
start_button = gr.Button("Start Processing")
|
172 |
+
cancel_button = gr.Button("Cancel Processing", variant="stop")
|
173 |
+
|
174 |
+
# Updated example files with 'examples/' path and renamed video file
|
175 |
+
examples = gr.Examples(
|
176 |
+
examples=[
|
177 |
+
["examples/pothole.jpg", None, 0.3, 0.001], # Example for image
|
178 |
+
[None, "examples/potholeall.mp4", 0.3, 0.001], # Renamed video example
|
179 |
+
[None, "examples/electric bus fire.mp4", 0.5, 0.001] # Updated confidence threshold for new video example
|
180 |
+
],
|
181 |
+
inputs=[image_input, video_input, confidence_slider, iou_slider]
|
182 |
+
)
|
183 |
+
|
184 |
+
def update_visibility(selected_mode):
|
185 |
+
if selected_mode == "Image":
|
186 |
+
return (
|
187 |
+
gr.update(visible=True),
|
188 |
+
gr.update(visible=False),
|
189 |
+
gr.update(visible=True),
|
190 |
+
gr.update(visible=False)
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
return (
|
194 |
+
gr.update(visible=False),
|
195 |
+
gr.update(visible=True),
|
196 |
+
gr.update(visible=False),
|
197 |
+
gr.update(visible=True)
|
198 |
+
)
|
199 |
+
|
200 |
+
mode.change(
|
201 |
+
update_visibility,
|
202 |
+
inputs=mode,
|
203 |
+
outputs=[image_input, video_input, annotated_image_output, annotated_video_output]
|
204 |
+
)
|
205 |
+
|
206 |
+
start_button.click(
|
207 |
+
fn=run_inference,
|
208 |
+
inputs=[mode, model_selector, image_input, video_input, confidence_slider, iou_slider],
|
209 |
+
outputs=[annotated_image_output, annotated_video_output, fps_output],
|
210 |
+
queue=True
|
211 |
+
)
|
212 |
+
|
213 |
+
cancel_button.click(
|
214 |
+
fn=cancel_processing,
|
215 |
+
inputs=[],
|
216 |
+
outputs=[fps_output],
|
217 |
+
queue=False
|
218 |
+
)
|
219 |
+
|
220 |
+
return app
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
app = start_app()
|
224 |
+
app.launch()
|