luminoussg commited on
Commit
c603f98
·
verified ·
1 Parent(s): fc4924f

Upload 67 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. models/crack/F1_curve.png +0 -0
  2. models/crack/P_curve.png +0 -0
  3. models/crack/R_curve.png +0 -0
  4. models/crack/args.yaml +106 -0
  5. models/crack/confusion_matrix.png +0 -0
  6. models/crack/confusion_matrix_normalized.png +0 -0
  7. models/crack/labels.jpg +0 -0
  8. models/crack/labels_correlogram.jpg +0 -0
  9. models/crack/results.csv +11 -0
  10. models/crack/results.png +0 -0
  11. models/crack/train_batch0.jpg +0 -0
  12. models/crack/train_batch1.jpg +0 -0
  13. models/crack/train_batch2.jpg +0 -0
  14. models/crack/val_batch0_labels.jpg +0 -0
  15. models/crack/val_batch0_pred.jpg +0 -0
  16. models/crack/weights/best.pt +3 -0
  17. models/crack/weights/last.pt +3 -0
  18. smoke/F1_curve.png +0 -0
  19. smoke/PR_curve.png +0 -0
  20. smoke/P_curve.png +0 -0
  21. smoke/R_curve.png +0 -0
  22. models/fire and smoke/args.yaml +106 -0
  23. smoke/confusion_matrix.png +0 -0
  24. smoke/confusion_matrix_normalized.png +0 -0
  25. smoke/labels.jpg +0 -0
  26. smoke/labels_correlogram.jpg +0 -0
  27. models/fire and smoke/results.csv +151 -0
  28. smoke/results.png +0 -0
  29. smoke/train_batch0.jpg +0 -0
  30. smoke/train_batch1.jpg +0 -0
  31. smoke/train_batch2.jpg +0 -0
  32. smoke/train_batch23800.jpg +0 -0
  33. smoke/train_batch23801.jpg +0 -0
  34. smoke/train_batch23802.jpg +0 -0
  35. smoke/val_batch0_labels.jpg +0 -0
  36. smoke/val_batch0_pred.jpg +0 -0
  37. smoke/val_batch1_labels.jpg +0 -0
  38. smoke/val_batch1_pred.jpg +0 -0
  39. smoke/val_batch2_labels.jpg +0 -0
  40. smoke/val_batch2_pred.jpg +0 -0
  41. models/fire and smoke/weights/best.pt +3 -0
  42. models/fire and smoke/weights/last.pt +3 -0
  43. models/pothole/F1_curve.png +0 -0
  44. models/pothole/PR_curve.png +0 -0
  45. models/pothole/P_curve.png +0 -0
  46. models/pothole/R_curve.png +0 -0
  47. models/pothole/args.yaml +107 -0
  48. models/pothole/confusion_matrix.png +0 -0
  49. models/pothole/confusion_matrix_normalized.png +0 -0
  50. models/pothole/labels.jpg +0 -0
models/crack/F1_curve.png ADDED
models/crack/P_curve.png ADDED
models/crack/R_curve.png ADDED
models/crack/args.yaml ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov8n.pt
4
+ data: upload/data.yaml
5
+ epochs: 10
6
+ time: null
7
+ patience: 100
8
+ batch: 16
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device: null
14
+ workers: 8
15
+ project: null
16
+ name: train
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: false
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.01
74
+ lrf: 0.01
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.1
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: 1.0
99
+ mixup: 0.0
100
+ copy_paste: 0.0
101
+ auto_augment: randaugment
102
+ erasing: 0.4
103
+ crop_fraction: 1.0
104
+ cfg: null
105
+ tracker: botsort.yaml
106
+ save_dir: /home/user/.pyenv/runs/detect/train
models/crack/confusion_matrix.png ADDED
models/crack/confusion_matrix_normalized.png ADDED
models/crack/labels.jpg ADDED
models/crack/labels_correlogram.jpg ADDED
models/crack/results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 1.5686, 2.6555, 1.6193, 0.38301, 0.45927, 0.3374, 0.15401, 1.6607, 2.691, 1.7752, 0.00066381, 0.00066381, 0.00066381
3
+ 2, 1.6174, 1.9769, 1.6529, 0.61842, 0.52565, 0.49902, 0.25676, 1.6342, 1.9606, 1.6604, 0.0011988, 0.0011988, 0.0011988
4
+ 3, 1.5187, 1.7049, 1.598, 0.62044, 0.5326, 0.51499, 0.26357, 1.6195, 2.047, 1.6089, 0.0016017, 0.0016017, 0.0016017
5
+ 4, 1.4059, 1.538, 1.5187, 0.77942, 0.62972, 0.62978, 0.38678, 1.4064, 1.4963, 1.4421, 0.001406, 0.001406, 0.001406
6
+ 5, 1.3011, 1.3901, 1.4391, 0.80197, 0.6354, 0.65287, 0.42807, 1.259, 1.3686, 1.348, 0.001208, 0.001208, 0.001208
7
+ 6, 1.2075, 1.3101, 1.3852, 0.78357, 0.63989, 0.65135, 0.43129, 1.2332, 1.3296, 1.3089, 0.00101, 0.00101, 0.00101
8
+ 7, 1.133, 1.2353, 1.3433, 0.84143, 0.66401, 0.70223, 0.49591, 1.0926, 1.1987, 1.2179, 0.000812, 0.000812, 0.000812
9
+ 8, 1.059, 1.1636, 1.3059, 0.84686, 0.66401, 0.70854, 0.50914, 1.0473, 1.1531, 1.1891, 0.000614, 0.000614, 0.000614
10
+ 9, 0.97326, 1.0869, 1.2602, 0.8498, 0.67989, 0.73031, 0.54836, 0.94932, 1.0725, 1.1202, 0.000416, 0.000416, 0.000416
11
+ 10, 0.91633, 1.0078, 1.2232, 0.8564, 0.68863, 0.75634, 0.57781, 0.89908, 1.0042, 1.091, 0.000218, 0.000218, 0.000218
models/crack/results.png ADDED
models/crack/train_batch0.jpg ADDED
models/crack/train_batch1.jpg ADDED
models/crack/train_batch2.jpg ADDED
models/crack/val_batch0_labels.jpg ADDED
models/crack/val_batch0_pred.jpg ADDED
models/crack/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bf1d8e7e5a769129adedea0bef193580e7e046aadf032ed279b133ae31a6ad3
3
+ size 6244963
models/crack/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a511f0aa3bd5518133be628035a1ffc56eb00bbefb23a602b4daf1bd1312714d
3
+ size 6244899
smoke/F1_curve.png RENAMED
File without changes
smoke/PR_curve.png RENAMED
File without changes
smoke/P_curve.png RENAMED
File without changes
smoke/R_curve.png RENAMED
File without changes
models/fire and smoke/args.yaml ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov8n.pt
4
+ data: upload/data.yaml
5
+ epochs: 150
6
+ time: null
7
+ patience: 100
8
+ batch: 16
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device: null
14
+ workers: 8
15
+ project: null
16
+ name: train
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: false
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.01
74
+ lrf: 0.01
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.1
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: 1.0
99
+ mixup: 0.0
100
+ copy_paste: 0.0
101
+ auto_augment: randaugment
102
+ erasing: 0.4
103
+ crop_fraction: 1.0
104
+ cfg: null
105
+ tracker: botsort.yaml
106
+ save_dir: /home/user/.pyenv/runs/detect/train
smoke/confusion_matrix.png RENAMED
File without changes
smoke/confusion_matrix_normalized.png RENAMED
File without changes
smoke/labels.jpg RENAMED
File without changes
smoke/labels_correlogram.jpg RENAMED
File without changes
models/fire and smoke/results.csv ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 1.9275, 2.8587, 1.8687, 0.25557, 0.3039, 0.19001, 0.06238, 2.2422, 3.6189, 2.2491, 0.0005524, 0.0005524, 0.0005524
3
+ 2, 1.9228, 2.4086, 1.8364, 0.33408, 0.33672, 0.25537, 0.10012, 2.1318, 2.3346, 2.0905, 0.0011008, 0.0011008, 0.0011008
4
+ 3, 1.9252, 2.2948, 1.8354, 0.34232, 0.35367, 0.26926, 0.10061, 2.0589, 2.3549, 2.0271, 0.0016418, 0.0016418, 0.0016418
5
+ 4, 1.913, 2.2182, 1.8212, 0.34948, 0.36871, 0.29611, 0.11677, 2.035, 2.2897, 2.0808, 0.001634, 0.001634, 0.001634
6
+ 5, 1.8731, 2.1513, 1.8049, 0.37002, 0.37029, 0.32785, 0.14424, 1.9697, 2.0774, 1.9189, 0.001623, 0.001623, 0.001623
7
+ 6, 1.8651, 2.0783, 1.7794, 0.39941, 0.38302, 0.36407, 0.15845, 1.9191, 2.1126, 1.8587, 0.001612, 0.001612, 0.001612
8
+ 7, 1.8391, 2.0239, 1.7536, 0.37822, 0.36713, 0.30294, 0.12752, 1.9364, 2.3259, 1.8561, 0.001601, 0.001601, 0.001601
9
+ 8, 1.8154, 1.9919, 1.7479, 0.46781, 0.43644, 0.42647, 0.18738, 1.9043, 1.912, 1.8069, 0.00159, 0.00159, 0.00159
10
+ 9, 1.8175, 1.9619, 1.7282, 0.47435, 0.46111, 0.44019, 0.19997, 1.8437, 1.8621, 1.8096, 0.001579, 0.001579, 0.001579
11
+ 10, 1.7844, 1.9524, 1.7183, 0.5124, 0.44933, 0.45754, 0.20162, 1.8519, 1.8868, 1.8114, 0.001568, 0.001568, 0.001568
12
+ 11, 1.776, 1.9039, 1.6954, 0.39805, 0.44056, 0.34984, 0.15306, 1.8288, 2.1447, 1.8071, 0.001557, 0.001557, 0.001557
13
+ 12, 1.7589, 1.8935, 1.6958, 0.4901, 0.47497, 0.46625, 0.20712, 1.8355, 2.0278, 1.7738, 0.001546, 0.001546, 0.001546
14
+ 13, 1.746, 1.9079, 1.6961, 0.50163, 0.44386, 0.44855, 0.2011, 1.82, 1.8933, 1.7618, 0.001535, 0.001535, 0.001535
15
+ 14, 1.7456, 1.8626, 1.6834, 0.53261, 0.47712, 0.49612, 0.23485, 1.7427, 1.7739, 1.7438, 0.001524, 0.001524, 0.001524
16
+ 15, 1.7274, 1.8334, 1.6723, 0.55583, 0.47652, 0.50403, 0.23326, 1.7813, 1.7334, 1.7453, 0.001513, 0.001513, 0.001513
17
+ 16, 1.7618, 1.8465, 1.6812, 0.55988, 0.485, 0.49912, 0.23499, 1.7493, 1.7037, 1.73, 0.001502, 0.001502, 0.001502
18
+ 17, 1.7246, 1.8132, 1.6717, 0.56783, 0.49605, 0.52427, 0.24724, 1.7557, 1.662, 1.7592, 0.001491, 0.001491, 0.001491
19
+ 18, 1.7318, 1.7965, 1.6593, 0.52806, 0.49951, 0.49972, 0.23024, 1.7675, 1.8392, 1.7134, 0.00148, 0.00148, 0.00148
20
+ 19, 1.7183, 1.7715, 1.6518, 0.55602, 0.51457, 0.53689, 0.25723, 1.7236, 1.6227, 1.6966, 0.001469, 0.001469, 0.001469
21
+ 20, 1.7134, 1.7853, 1.6546, 0.56567, 0.49941, 0.52813, 0.25865, 1.6908, 1.6649, 1.6704, 0.001458, 0.001458, 0.001458
22
+ 21, 1.6899, 1.7303, 1.636, 0.57048, 0.52364, 0.54977, 0.26672, 1.7086, 1.6514, 1.6733, 0.001447, 0.001447, 0.001447
23
+ 22, 1.7024, 1.7575, 1.6338, 0.56334, 0.50159, 0.53509, 0.25786, 1.7233, 1.6477, 1.6704, 0.001436, 0.001436, 0.001436
24
+ 23, 1.686, 1.7554, 1.6488, 0.56961, 0.51133, 0.5512, 0.26769, 1.7147, 1.6342, 1.689, 0.001425, 0.001425, 0.001425
25
+ 24, 1.676, 1.7246, 1.6293, 0.54036, 0.47029, 0.49495, 0.23369, 1.7242, 1.7138, 1.6782, 0.0014139, 0.0014139, 0.0014139
26
+ 25, 1.6564, 1.7014, 1.6143, 0.59522, 0.51022, 0.56036, 0.27037, 1.6869, 1.6598, 1.6858, 0.0014029, 0.0014029, 0.0014029
27
+ 26, 1.6735, 1.7027, 1.6344, 0.56921, 0.48582, 0.5209, 0.24676, 1.7166, 1.7366, 1.6718, 0.0013919, 0.0013919, 0.0013919
28
+ 27, 1.6498, 1.678, 1.6078, 0.56825, 0.52541, 0.54744, 0.27373, 1.6747, 1.5952, 1.6743, 0.0013809, 0.0013809, 0.0013809
29
+ 28, 1.6537, 1.6596, 1.6021, 0.57046, 0.52521, 0.54932, 0.27113, 1.6676, 1.5473, 1.6737, 0.0013699, 0.0013699, 0.0013699
30
+ 29, 1.6835, 1.71, 1.6308, 0.58273, 0.50996, 0.54938, 0.26096, 1.6948, 1.6316, 1.6571, 0.0013589, 0.0013589, 0.0013589
31
+ 30, 1.6561, 1.6901, 1.621, 0.5803, 0.52415, 0.56067, 0.2726, 1.6856, 1.5735, 1.635, 0.0013479, 0.0013479, 0.0013479
32
+ 31, 1.653, 1.6477, 1.6063, 0.60985, 0.54129, 0.58286, 0.28941, 1.6424, 1.5444, 1.6546, 0.0013369, 0.0013369, 0.0013369
33
+ 32, 1.6522, 1.6509, 1.6174, 0.62272, 0.52217, 0.57853, 0.29246, 1.6588, 1.5042, 1.6546, 0.0013259, 0.0013259, 0.0013259
34
+ 33, 1.643, 1.6532, 1.6048, 0.58906, 0.53926, 0.57636, 0.2854, 1.6624, 1.5259, 1.6494, 0.0013149, 0.0013149, 0.0013149
35
+ 34, 1.6486, 1.6515, 1.6063, 0.60822, 0.55392, 0.60197, 0.29985, 1.6179, 1.4609, 1.5966, 0.0013039, 0.0013039, 0.0013039
36
+ 35, 1.6573, 1.6433, 1.6115, 0.60808, 0.55699, 0.59762, 0.30489, 1.6119, 1.4949, 1.6002, 0.0012929, 0.0012929, 0.0012929
37
+ 36, 1.6433, 1.6103, 1.5966, 0.62065, 0.56485, 0.61592, 0.30822, 1.6312, 1.4148, 1.6019, 0.0012819, 0.0012819, 0.0012819
38
+ 37, 1.6133, 1.6101, 1.5828, 0.58511, 0.51842, 0.57054, 0.28592, 1.6368, 1.5876, 1.6211, 0.0012709, 0.0012709, 0.0012709
39
+ 38, 1.6184, 1.5957, 1.5838, 0.64993, 0.56502, 0.62163, 0.31886, 1.5954, 1.3984, 1.5811, 0.0012599, 0.0012599, 0.0012599
40
+ 39, 1.6271, 1.5735, 1.5701, 0.62587, 0.56091, 0.61294, 0.30961, 1.605, 1.4107, 1.5738, 0.0012489, 0.0012489, 0.0012489
41
+ 40, 1.6049, 1.5666, 1.567, 0.63396, 0.56651, 0.61719, 0.31757, 1.5933, 1.4044, 1.5934, 0.0012379, 0.0012379, 0.0012379
42
+ 41, 1.6105, 1.5893, 1.5725, 0.63304, 0.56052, 0.61803, 0.31382, 1.5924, 1.4264, 1.5746, 0.0012269, 0.0012269, 0.0012269
43
+ 42, 1.6148, 1.571, 1.574, 0.63885, 0.56838, 0.62692, 0.31973, 1.5967, 1.4204, 1.5871, 0.0012159, 0.0012159, 0.0012159
44
+ 43, 1.5753, 1.5552, 1.5534, 0.64268, 0.59484, 0.63615, 0.3338, 1.556, 1.3855, 1.5653, 0.0012049, 0.0012049, 0.0012049
45
+ 44, 1.5902, 1.5441, 1.5589, 0.62906, 0.5686, 0.62385, 0.32227, 1.5753, 1.3871, 1.5718, 0.0011939, 0.0011939, 0.0011939
46
+ 45, 1.5921, 1.5491, 1.5545, 0.64202, 0.59744, 0.6427, 0.33703, 1.5525, 1.3623, 1.5651, 0.0011829, 0.0011829, 0.0011829
47
+ 46, 1.5974, 1.5372, 1.561, 0.65034, 0.58806, 0.64129, 0.33866, 1.551, 1.3486, 1.5629, 0.0011719, 0.0011719, 0.0011719
48
+ 47, 1.5778, 1.5238, 1.5537, 0.61846, 0.59903, 0.63197, 0.32823, 1.5748, 1.3566, 1.5633, 0.0011609, 0.0011609, 0.0011609
49
+ 48, 1.5795, 1.5202, 1.5586, 0.64006, 0.6095, 0.6577, 0.34874, 1.5393, 1.3115, 1.5499, 0.0011499, 0.0011499, 0.0011499
50
+ 49, 1.5864, 1.524, 1.5643, 0.66245, 0.60814, 0.66928, 0.36021, 1.5147, 1.3084, 1.542, 0.0011389, 0.0011389, 0.0011389
51
+ 50, 1.581, 1.5042, 1.5526, 0.66348, 0.60679, 0.6625, 0.34961, 1.5507, 1.304, 1.573, 0.0011279, 0.0011279, 0.0011279
52
+ 51, 1.5752, 1.5001, 1.5574, 0.65834, 0.62816, 0.67404, 0.35684, 1.5303, 1.2984, 1.5449, 0.0011169, 0.0011169, 0.0011169
53
+ 52, 1.5798, 1.4813, 1.5518, 0.65603, 0.61312, 0.666, 0.35798, 1.5191, 1.2974, 1.5255, 0.0011059, 0.0011059, 0.0011059
54
+ 53, 1.5578, 1.4738, 1.5359, 0.65014, 0.6221, 0.67209, 0.35707, 1.5269, 1.289, 1.5306, 0.0010949, 0.0010949, 0.0010949
55
+ 54, 1.5504, 1.4941, 1.5354, 0.68911, 0.62442, 0.68903, 0.36847, 1.5239, 1.2439, 1.5242, 0.0010839, 0.0010839, 0.0010839
56
+ 55, 1.5541, 1.4664, 1.531, 0.66381, 0.62552, 0.67752, 0.3583, 1.5248, 1.2916, 1.5263, 0.0010729, 0.0010729, 0.0010729
57
+ 56, 1.5462, 1.4548, 1.5245, 0.64328, 0.62314, 0.66817, 0.35294, 1.5322, 1.2862, 1.5297, 0.0010619, 0.0010619, 0.0010619
58
+ 57, 1.5375, 1.437, 1.5172, 0.66341, 0.63014, 0.67672, 0.3621, 1.5006, 1.2549, 1.5144, 0.0010509, 0.0010509, 0.0010509
59
+ 58, 1.5505, 1.4667, 1.5249, 0.66434, 0.63002, 0.68789, 0.3722, 1.5012, 1.2358, 1.5156, 0.0010399, 0.0010399, 0.0010399
60
+ 59, 1.5506, 1.4411, 1.5256, 0.67146, 0.62614, 0.67626, 0.36585, 1.5021, 1.2953, 1.5251, 0.0010289, 0.0010289, 0.0010289
61
+ 60, 1.5393, 1.4173, 1.5175, 0.64687, 0.62545, 0.67607, 0.36509, 1.5109, 1.2677, 1.5112, 0.0010179, 0.0010179, 0.0010179
62
+ 61, 1.5393, 1.4384, 1.5175, 0.67838, 0.62818, 0.6905, 0.38038, 1.4711, 1.2371, 1.4923, 0.0010069, 0.0010069, 0.0010069
63
+ 62, 1.5282, 1.4378, 1.5156, 0.69098, 0.6675, 0.71837, 0.39629, 1.453, 1.1906, 1.4844, 0.00099587, 0.00099587, 0.00099587
64
+ 63, 1.51, 1.3966, 1.5046, 0.689, 0.66423, 0.7179, 0.40326, 1.4441, 1.2026, 1.4712, 0.00098486, 0.00098486, 0.00098486
65
+ 64, 1.539, 1.4097, 1.5196, 0.6827, 0.66157, 0.71347, 0.39774, 1.4491, 1.1729, 1.4782, 0.00097386, 0.00097386, 0.00097386
66
+ 65, 1.5076, 1.3754, 1.495, 0.68568, 0.65575, 0.71522, 0.39122, 1.4825, 1.1924, 1.4876, 0.00096286, 0.00096286, 0.00096286
67
+ 66, 1.5238, 1.3948, 1.4963, 0.67801, 0.6579, 0.71398, 0.3947, 1.4544, 1.1977, 1.4669, 0.00095186, 0.00095186, 0.00095186
68
+ 67, 1.5214, 1.3866, 1.5014, 0.67682, 0.65099, 0.71104, 0.39221, 1.4511, 1.2095, 1.4676, 0.00094085, 0.00094085, 0.00094085
69
+ 68, 1.4971, 1.3806, 1.4894, 0.70203, 0.66156, 0.72493, 0.40061, 1.4521, 1.1571, 1.4714, 0.00092985, 0.00092985, 0.00092985
70
+ 69, 1.4951, 1.3806, 1.4857, 0.70966, 0.66271, 0.73201, 0.40987, 1.4335, 1.1344, 1.4582, 0.00091885, 0.00091885, 0.00091885
71
+ 70, 1.4951, 1.342, 1.4781, 0.70858, 0.67368, 0.73681, 0.41703, 1.4198, 1.1441, 1.445, 0.00090785, 0.00090785, 0.00090785
72
+ 71, 1.5001, 1.3455, 1.4856, 0.70619, 0.68155, 0.73918, 0.41804, 1.4207, 1.1193, 1.45, 0.00089685, 0.00089685, 0.00089685
73
+ 72, 1.4921, 1.3546, 1.4844, 0.69421, 0.68174, 0.73512, 0.41828, 1.4125, 1.1397, 1.4386, 0.00088584, 0.00088584, 0.00088584
74
+ 73, 1.48, 1.3387, 1.4689, 0.72745, 0.67668, 0.7522, 0.43121, 1.3962, 1.088, 1.428, 0.00087484, 0.00087484, 0.00087484
75
+ 74, 1.4879, 1.3455, 1.4709, 0.72481, 0.67256, 0.74347, 0.42767, 1.3975, 1.1055, 1.4293, 0.00086384, 0.00086384, 0.00086384
76
+ 75, 1.484, 1.3007, 1.4718, 0.7064, 0.70737, 0.75742, 0.43305, 1.3988, 1.0856, 1.4237, 0.00085284, 0.00085284, 0.00085284
77
+ 76, 1.4774, 1.3062, 1.4593, 0.70348, 0.68297, 0.74625, 0.42855, 1.3844, 1.1036, 1.4173, 0.00084184, 0.00084184, 0.00084184
78
+ 77, 1.4804, 1.3033, 1.4589, 0.71864, 0.69172, 0.76016, 0.43999, 1.3795, 1.0661, 1.4092, 0.00083083, 0.00083083, 0.00083083
79
+ 78, 1.4698, 1.3065, 1.4621, 0.7431, 0.68717, 0.76247, 0.44166, 1.3812, 1.0674, 1.4243, 0.00081983, 0.00081983, 0.00081983
80
+ 79, 1.4602, 1.2937, 1.4588, 0.72028, 0.70287, 0.76317, 0.44091, 1.3794, 1.0719, 1.4221, 0.00080883, 0.00080883, 0.00080883
81
+ 80, 1.4571, 1.2914, 1.4529, 0.72384, 0.71156, 0.77025, 0.44802, 1.3708, 1.0451, 1.4029, 0.00079783, 0.00079783, 0.00079783
82
+ 81, 1.4526, 1.2758, 1.4471, 0.74301, 0.70657, 0.77897, 0.45489, 1.3557, 1.0363, 1.3854, 0.00078682, 0.00078682, 0.00078682
83
+ 82, 1.4563, 1.2695, 1.451, 0.73543, 0.72189, 0.78365, 0.46284, 1.3482, 1.021, 1.3885, 0.00077582, 0.00077582, 0.00077582
84
+ 83, 1.4544, 1.2518, 1.443, 0.7463, 0.69968, 0.77486, 0.45238, 1.3677, 1.0291, 1.4034, 0.00076482, 0.00076482, 0.00076482
85
+ 84, 1.4626, 1.2465, 1.4462, 0.75612, 0.70881, 0.7859, 0.46123, 1.3577, 1.0162, 1.3928, 0.00075382, 0.00075382, 0.00075382
86
+ 85, 1.461, 1.2694, 1.4613, 0.73889, 0.71356, 0.78417, 0.46719, 1.3257, 1.0214, 1.385, 0.00074282, 0.00074282, 0.00074282
87
+ 86, 1.4488, 1.2616, 1.4444, 0.75999, 0.70948, 0.79063, 0.47015, 1.3339, 1.0051, 1.3819, 0.00073181, 0.00073181, 0.00073181
88
+ 87, 1.4286, 1.2545, 1.4309, 0.76273, 0.73523, 0.80267, 0.47893, 1.3138, 0.97717, 1.3644, 0.00072081, 0.00072081, 0.00072081
89
+ 88, 1.4453, 1.2481, 1.4341, 0.74794, 0.73975, 0.803, 0.48176, 1.3148, 0.99602, 1.365, 0.00070981, 0.00070981, 0.00070981
90
+ 89, 1.4171, 1.2305, 1.4232, 0.75496, 0.7267, 0.80211, 0.48144, 1.3138, 0.97952, 1.3664, 0.00069881, 0.00069881, 0.00069881
91
+ 90, 1.4216, 1.211, 1.4226, 0.76769, 0.73156, 0.80172, 0.47619, 1.3221, 0.97849, 1.3666, 0.0006878, 0.0006878, 0.0006878
92
+ 91, 1.4295, 1.2241, 1.4364, 0.76008, 0.74022, 0.80796, 0.48877, 1.2988, 0.97539, 1.3605, 0.0006768, 0.0006768, 0.0006768
93
+ 92, 1.417, 1.2091, 1.4221, 0.75812, 0.73217, 0.80102, 0.48058, 1.3135, 0.98909, 1.3552, 0.0006658, 0.0006658, 0.0006658
94
+ 93, 1.4179, 1.178, 1.4208, 0.77683, 0.75159, 0.82066, 0.49952, 1.2876, 0.93018, 1.3463, 0.0006548, 0.0006548, 0.0006548
95
+ 94, 1.4161, 1.2083, 1.4286, 0.76629, 0.7497, 0.82227, 0.49962, 1.294, 0.93339, 1.3483, 0.0006438, 0.0006438, 0.0006438
96
+ 95, 1.4149, 1.2119, 1.4248, 0.78841, 0.74188, 0.82844, 0.50466, 1.2862, 0.9223, 1.344, 0.00063279, 0.00063279, 0.00063279
97
+ 96, 1.387, 1.1735, 1.4006, 0.77709, 0.74794, 0.82512, 0.50482, 1.2772, 0.91904, 1.3357, 0.00062179, 0.00062179, 0.00062179
98
+ 97, 1.3992, 1.1934, 1.4057, 0.76786, 0.73923, 0.81576, 0.49793, 1.277, 0.9438, 1.3343, 0.00061079, 0.00061079, 0.00061079
99
+ 98, 1.4072, 1.185, 1.4147, 0.78036, 0.75982, 0.83447, 0.51031, 1.2635, 0.90347, 1.3288, 0.00059979, 0.00059979, 0.00059979
100
+ 99, 1.3916, 1.1684, 1.401, 0.77867, 0.75767, 0.83507, 0.51415, 1.2665, 0.89985, 1.3244, 0.00058878, 0.00058878, 0.00058878
101
+ 100, 1.3847, 1.166, 1.397, 0.7821, 0.76053, 0.83452, 0.51893, 1.2529, 0.89933, 1.3187, 0.00057778, 0.00057778, 0.00057778
102
+ 101, 1.383, 1.1579, 1.3882, 0.77291, 0.77057, 0.83613, 0.51999, 1.2491, 0.89026, 1.3153, 0.00056678, 0.00056678, 0.00056678
103
+ 102, 1.3806, 1.1671, 1.3979, 0.79494, 0.76254, 0.84315, 0.52654, 1.2435, 0.88168, 1.3145, 0.00055578, 0.00055578, 0.00055578
104
+ 103, 1.3805, 1.1676, 1.3955, 0.78821, 0.77749, 0.84629, 0.53075, 1.2381, 0.86355, 1.3096, 0.00054478, 0.00054478, 0.00054478
105
+ 104, 1.3728, 1.1521, 1.384, 0.78726, 0.78882, 0.85194, 0.53514, 1.2264, 0.85757, 1.2983, 0.00053377, 0.00053377, 0.00053377
106
+ 105, 1.3801, 1.1486, 1.3982, 0.79405, 0.78003, 0.85073, 0.53458, 1.2291, 0.86557, 1.307, 0.00052277, 0.00052277, 0.00052277
107
+ 106, 1.3738, 1.1328, 1.3893, 0.80403, 0.78307, 0.8582, 0.54393, 1.2157, 0.83899, 1.2924, 0.00051177, 0.00051177, 0.00051177
108
+ 107, 1.3568, 1.1224, 1.3805, 0.8011, 0.7805, 0.85662, 0.54225, 1.223, 0.84178, 1.2938, 0.00050077, 0.00050077, 0.00050077
109
+ 108, 1.3708, 1.1212, 1.3861, 0.811, 0.78369, 0.86104, 0.54879, 1.2117, 0.83165, 1.2825, 0.00048976, 0.00048976, 0.00048976
110
+ 109, 1.3559, 1.1044, 1.3666, 0.80873, 0.78813, 0.86193, 0.5494, 1.2093, 0.82814, 1.2789, 0.00047876, 0.00047876, 0.00047876
111
+ 110, 1.3479, 1.1028, 1.3631, 0.79454, 0.78468, 0.85569, 0.54155, 1.2217, 0.85203, 1.2879, 0.00046776, 0.00046776, 0.00046776
112
+ 111, 1.3597, 1.0864, 1.3689, 0.81003, 0.80229, 0.86803, 0.5561, 1.1975, 0.81444, 1.2762, 0.00045676, 0.00045676, 0.00045676
113
+ 112, 1.3487, 1.1204, 1.3711, 0.81373, 0.79433, 0.87188, 0.56329, 1.1893, 0.80959, 1.27, 0.00044576, 0.00044576, 0.00044576
114
+ 113, 1.3355, 1.0954, 1.3651, 0.82609, 0.77875, 0.86917, 0.56015, 1.1891, 0.81223, 1.2681, 0.00043475, 0.00043475, 0.00043475
115
+ 114, 1.3437, 1.0729, 1.3607, 0.82017, 0.79487, 0.8772, 0.56762, 1.1794, 0.79494, 1.2617, 0.00042375, 0.00042375, 0.00042375
116
+ 115, 1.3421, 1.0945, 1.3607, 0.82484, 0.79165, 0.87364, 0.56289, 1.1859, 0.8024, 1.2666, 0.00041275, 0.00041275, 0.00041275
117
+ 116, 1.3305, 1.0847, 1.3552, 0.84008, 0.79254, 0.87902, 0.57078, 1.1711, 0.78782, 1.2589, 0.00040175, 0.00040175, 0.00040175
118
+ 117, 1.3413, 1.0672, 1.3536, 0.82131, 0.80227, 0.8772, 0.57182, 1.1717, 0.78777, 1.2577, 0.00039074, 0.00039074, 0.00039074
119
+ 118, 1.3346, 1.0829, 1.3686, 0.82581, 0.80026, 0.87979, 0.57323, 1.1692, 0.79225, 1.2594, 0.00037974, 0.00037974, 0.00037974
120
+ 119, 1.3307, 1.0914, 1.3595, 0.83069, 0.80489, 0.88446, 0.57657, 1.1609, 0.77711, 1.251, 0.00036874, 0.00036874, 0.00036874
121
+ 120, 1.3192, 1.0611, 1.3528, 0.82963, 0.80569, 0.88292, 0.57922, 1.1546, 0.7802, 1.251, 0.00035774, 0.00035774, 0.00035774
122
+ 121, 1.3243, 1.0595, 1.3474, 0.83626, 0.80051, 0.88443, 0.58038, 1.1579, 0.77636, 1.2484, 0.00034674, 0.00034674, 0.00034674
123
+ 122, 1.3188, 1.0563, 1.3491, 0.8411, 0.80393, 0.88798, 0.58692, 1.1469, 0.76973, 1.2426, 0.00033573, 0.00033573, 0.00033573
124
+ 123, 1.3038, 1.0403, 1.3393, 0.83911, 0.81583, 0.892, 0.58854, 1.1451, 0.75648, 1.2415, 0.00032473, 0.00032473, 0.00032473
125
+ 124, 1.3061, 1.0471, 1.3389, 0.84014, 0.80277, 0.889, 0.58647, 1.1393, 0.75973, 1.2349, 0.00031373, 0.00031373, 0.00031373
126
+ 125, 1.2963, 1.0409, 1.3311, 0.83147, 0.8151, 0.89001, 0.58903, 1.1378, 0.76244, 1.2326, 0.00030273, 0.00030273, 0.00030273
127
+ 126, 1.29, 1.0218, 1.3282, 0.84536, 0.81069, 0.89667, 0.59487, 1.131, 0.73918, 1.2291, 0.00029172, 0.00029172, 0.00029172
128
+ 127, 1.2921, 1.0213, 1.3223, 0.84, 0.82085, 0.89661, 0.59529, 1.128, 0.73861, 1.2265, 0.00028072, 0.00028072, 0.00028072
129
+ 128, 1.2921, 1.0136, 1.3288, 0.83948, 0.833, 0.89981, 0.59691, 1.1254, 0.73131, 1.2223, 0.00026972, 0.00026972, 0.00026972
130
+ 129, 1.2947, 1.0267, 1.3304, 0.84473, 0.82621, 0.89956, 0.60111, 1.1178, 0.72781, 1.2175, 0.00025872, 0.00025872, 0.00025872
131
+ 130, 1.2785, 1.0027, 1.3179, 0.84049, 0.836, 0.90217, 0.60327, 1.1147, 0.72443, 1.217, 0.00024772, 0.00024772, 0.00024772
132
+ 131, 1.2737, 0.99355, 1.3091, 0.8486, 0.8281, 0.90467, 0.60672, 1.1122, 0.7233, 1.2143, 0.00023671, 0.00023671, 0.00023671
133
+ 132, 1.2857, 1.0085, 1.3116, 0.83773, 0.83603, 0.90315, 0.60706, 1.1107, 0.72505, 1.2115, 0.00022571, 0.00022571, 0.00022571
134
+ 133, 1.277, 0.99782, 1.3107, 0.84781, 0.83326, 0.90724, 0.61212, 1.1023, 0.71153, 1.2066, 0.00021471, 0.00021471, 0.00021471
135
+ 134, 1.2734, 0.99034, 1.3114, 0.85293, 0.83224, 0.90769, 0.61502, 1.0984, 0.71036, 1.2044, 0.00020371, 0.00020371, 0.00020371
136
+ 135, 1.2748, 0.99233, 1.3174, 0.84191, 0.83956, 0.90888, 0.61567, 1.0955, 0.70612, 1.2064, 0.00019271, 0.00019271, 0.00019271
137
+ 136, 1.2567, 0.98081, 1.3074, 0.84429, 0.83517, 0.90686, 0.61367, 1.098, 0.70962, 1.2065, 0.0001817, 0.0001817, 0.0001817
138
+ 137, 1.26, 0.96917, 1.309, 0.8501, 0.83856, 0.91208, 0.61823, 1.095, 0.70094, 1.2022, 0.0001707, 0.0001707, 0.0001707
139
+ 138, 1.2611, 0.97958, 1.3069, 0.84482, 0.84608, 0.91398, 0.62095, 1.0884, 0.6967, 1.1968, 0.0001597, 0.0001597, 0.0001597
140
+ 139, 1.2665, 0.98253, 1.3054, 0.846, 0.8468, 0.91401, 0.623, 1.0849, 0.69225, 1.1962, 0.0001487, 0.0001487, 0.0001487
141
+ 140, 1.2576, 0.97311, 1.3063, 0.85957, 0.84093, 0.91616, 0.62596, 1.0838, 0.68796, 1.1957, 0.00013769, 0.00013769, 0.00013769
142
+ 141, 1.2514, 0.90313, 1.3156, 0.85894, 0.83218, 0.91146, 0.61816, 1.0962, 0.70164, 1.2022, 0.00012669, 0.00012669, 0.00012669
143
+ 142, 1.2148, 0.86695, 1.3008, 0.86211, 0.83122, 0.91332, 0.6203, 1.0934, 0.69701, 1.1993, 0.00011569, 0.00011569, 0.00011569
144
+ 143, 1.2003, 0.85823, 1.2868, 0.86287, 0.83886, 0.91607, 0.62394, 1.0867, 0.69056, 1.1958, 0.00010469, 0.00010469, 0.00010469
145
+ 144, 1.1934, 0.84246, 1.2867, 0.86441, 0.83667, 0.91752, 0.62673, 1.0762, 0.68276, 1.1908, 9.3685e-05, 9.3685e-05, 9.3685e-05
146
+ 145, 1.1921, 0.83366, 1.2798, 0.86131, 0.84159, 0.919, 0.63017, 1.0719, 0.67878, 1.188, 8.2683e-05, 8.2683e-05, 8.2683e-05
147
+ 146, 1.1934, 0.83195, 1.2787, 0.85971, 0.84727, 0.92137, 0.635, 1.0666, 0.67096, 1.1835, 7.1681e-05, 7.1681e-05, 7.1681e-05
148
+ 147, 1.2007, 0.83376, 1.2798, 0.86462, 0.84381, 0.92144, 0.63407, 1.065, 0.67298, 1.1832, 6.0679e-05, 6.0679e-05, 6.0679e-05
149
+ 148, 1.1871, 0.82173, 1.2703, 0.87173, 0.84649, 0.92381, 0.63735, 1.0606, 0.66622, 1.1802, 4.9677e-05, 4.9677e-05, 4.9677e-05
150
+ 149, 1.1812, 0.81495, 1.2731, 0.87337, 0.84858, 0.9251, 0.64073, 1.0576, 0.66212, 1.1782, 3.8674e-05, 3.8674e-05, 3.8674e-05
151
+ 150, 1.175, 0.82054, 1.2713, 0.86879, 0.84861, 0.92501, 0.64001, 1.0583, 0.66186, 1.1776, 2.7672e-05, 2.7672e-05, 2.7672e-05
smoke/results.png RENAMED
File without changes
smoke/train_batch0.jpg RENAMED
File without changes
smoke/train_batch1.jpg RENAMED
File without changes
smoke/train_batch2.jpg RENAMED
File without changes
smoke/train_batch23800.jpg RENAMED
File without changes
smoke/train_batch23801.jpg RENAMED
File without changes
smoke/train_batch23802.jpg RENAMED
File without changes
smoke/val_batch0_labels.jpg RENAMED
File without changes
smoke/val_batch0_pred.jpg RENAMED
File without changes
smoke/val_batch1_labels.jpg RENAMED
File without changes
smoke/val_batch1_pred.jpg RENAMED
File without changes
smoke/val_batch2_labels.jpg RENAMED
File without changes
smoke/val_batch2_pred.jpg RENAMED
File without changes
models/fire and smoke/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac0a10257b2bc1f20c9d957f8adeeb61dd6140322fc19d0b4a116cb491776d16
3
+ size 6262051
models/fire and smoke/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982a52f8ddb0b047ac2b0c52c0d574f16983c44248f988d2de901d0e4811d804
3
+ size 6262051
models/pothole/F1_curve.png ADDED
models/pothole/PR_curve.png ADDED
models/pothole/P_curve.png ADDED
models/pothole/R_curve.png ADDED
models/pothole/args.yaml ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov8n.pt
4
+ data: upload/data.yaml
5
+ epochs: 100
6
+ time: null
7
+ patience: 100
8
+ batch: 16
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device: null
14
+ workers: 8
15
+ project: null
16
+ name: train
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: true
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.01
74
+ lrf: 0.01
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.1
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: 1.0
99
+ mixup: 0.0
100
+ copy_paste: 0.0
101
+ copy_paste_mode: flip
102
+ auto_augment: randaugment
103
+ erasing: 0.4
104
+ crop_fraction: 1.0
105
+ cfg: null
106
+ tracker: botsort.yaml
107
+ save_dir: /home/user/.pyenv/runs/detect/train
models/pothole/confusion_matrix.png ADDED
models/pothole/confusion_matrix_normalized.png ADDED
models/pothole/labels.jpg ADDED