File size: 8,210 Bytes
4e37a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import cv2
import torch
import time
import numpy as np
from ultralytics import YOLO
import os

# Optimize CPU usage
torch.set_num_threads(8)
MODEL_DIR = "models"

stop_processing = False  # Global flag to stop processing

def get_model_options():
    models = {}
    for root, dirs, files in os.walk(MODEL_DIR):
        for file in files:
            if file.endswith(".pt"):
                model_name = os.path.basename(os.path.dirname(root))
                models[model_name] = os.path.join(root, file)
    return models

model_options = get_model_options()

def annotate_frame(frame, results):
    for box in results[0].boxes:
        xyxy = box.xyxy[0].numpy()
        class_id = int(box.cls[0].item())
        label = results[0].names[class_id]

        start_point = (int(xyxy[0]), int(xyxy[1]))
        end_point = (int(xyxy[2]), int(xyxy[3]))
        color = (0, 255, 0)
        thickness = 2
        cv2.rectangle(frame, start_point, end_point, color, thickness)

        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 0.5
        font_thickness = 1
        label_position = (int(xyxy[0]), int(xyxy[1] - 10))
        cv2.putText(frame, label, label_position, font, font_scale, color, font_thickness)
    return frame

def process_image(model_name, image, confidence_threshold, iou_threshold):
    model_path = model_options[model_name]
    model = YOLO(model_path).to('cpu')

    frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    with torch.inference_mode():
        results = model(frame, conf=confidence_threshold, iou=iou_threshold)
    annotated_frame = annotate_frame(frame, results)
    annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
    return annotated_frame, "N/A"

def run_inference(mode, model_name, image, video, confidence_threshold, iou_threshold):
    global stop_processing
    stop_processing = False  # Reset stop flag at the start

    if mode == "Image":
        if image is None:
            yield None, None, "Please upload an image."
            return
        annotated_img, fps = process_image(model_name, image, confidence_threshold, iou_threshold)
        yield annotated_img, None, fps
    else:
        if video is None:
            yield None, None, "Please upload a video."
            return

        model_path = model_options[model_name]
        model = YOLO(model_path).to('cpu')
        cap = cv2.VideoCapture(video)

        frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        if frame_count <= 0:
            frame_count = 1

        output_frames = []
        fps_list = []
        processed_count = 0

        while not stop_processing:
            ret, frame = cap.read()
            if not ret:
                break

            start_time = time.time()
            with torch.inference_mode():
                results = model(frame, conf=confidence_threshold, iou=iou_threshold)

            annotated_frame = annotate_frame(frame, results)
            output_frames.append(annotated_frame)

            fps_val = 1 / (time.time() - start_time)
            fps_list.append(fps_val)

            processed_count += 1
            progress_fraction = processed_count / frame_count

            # Yield progress every few frames
            if processed_count % 5 == 0:
                yield None, None, f"Processing... {progress_fraction * 100:.2f}%"

            if stop_processing:
                yield None, None, "Processing canceled."
                return

        cap.release()

        if len(output_frames) > 0 and not stop_processing:
            avg_fps = sum(fps_list) / len(fps_list) if fps_list else 0
            height, width, _ = output_frames[0].shape
            output_video_path = "output.mp4"
            out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 30, (width, height))
            for frame in output_frames:
                out.write(frame)
            out.release()

            yield None, output_video_path, f"Average FPS: {avg_fps:.2f}"
        elif not stop_processing:
            yield None, None, "No frames processed."

def cancel_processing():
    global stop_processing
    stop_processing = True
    return "Cancel signal sent."

def start_app():
    model_names = list(model_options.keys())

    with gr.Blocks() as app:
        # **Instructional Message Added Here**
        gr.Markdown("""
        ### Welcome to the YOLO Inference App!
        **How to Use:**
        1. **Select Mode:**
           - Choose between **Image** or **Video** processing.
        2. **Select Model:**
           - Pick a pre-trained YOLO model from the dropdown menu.
        3. **Upload Your File:**
           - For **Image** mode, upload an image (e.g., `pothole.jpg`).
           - For **Video** mode, upload a video (e.g., `potholeall.mp4` or `electric bus fire.mp4`).
        4. **Adjust Thresholds:**
           - **Confidence Threshold:** Determines the minimum confidence for detections.
           - **IoU Threshold:** Determines the Intersection over Union threshold for non-maximum suppression.
        5. **Start Processing:**
           - Click on **Start Processing** to begin inference.
           - You can cancel the processing at any time by clicking **Cancel Processing**.
        **Example Files:**
        - **Image:** `pothole.jpg`
        - **Videos:** `potholeall.mp4`, `electric bus fire.mp4`
        """)

        gr.Markdown("## YOLO Inference (Image or Video) with Progress & Cancel")
        
        with gr.Row():
            mode = gr.Radio(["Image", "Video"], value="Image", label="Mode")
            model_selector = gr.Dropdown(choices=model_names, label="Select Model", value=model_names[0])
        
        image_input = gr.Image(label="Upload Image", visible=True)
        video_input = gr.Video(label="Upload Video", visible=False)

        confidence_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Confidence Threshold")
        iou_slider = gr.Slider(0.1, 1.0, value=0.001, step=0.001, label="IoU Threshold")

        annotated_image_output = gr.Image(label="Annotated Image", visible=True)
        annotated_video_output = gr.Video(label="Output Video", visible=False)
        fps_output = gr.Textbox(label="Status / Average FPS", interactive=False)

        start_button = gr.Button("Start Processing")
        cancel_button = gr.Button("Cancel Processing", variant="stop")

        # Updated example files with 'examples/' path and renamed video file
        examples = gr.Examples(
            examples=[
                ["examples/pothole.jpg", None, 0.3, 0.001],                  # Example for image
                [None, "examples/potholeall.mp4", 0.3, 0.001],              # Renamed video example
                [None, "examples/electric bus fire.mp4", 0.5, 0.001]        # Updated confidence threshold for new video example
            ],
            inputs=[image_input, video_input, confidence_slider, iou_slider]
        )

        def update_visibility(selected_mode):
            if selected_mode == "Image":
                return (
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=True),
                    gr.update(visible=False)
                )
            else:
                return (
                    gr.update(visible=False),
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=True)
                )

        mode.change(
            update_visibility, 
            inputs=mode, 
            outputs=[image_input, video_input, annotated_image_output, annotated_video_output]
        )

        start_button.click(
            fn=run_inference,
            inputs=[mode, model_selector, image_input, video_input, confidence_slider, iou_slider],
            outputs=[annotated_image_output, annotated_video_output, fps_output],
            queue=True
        )

        cancel_button.click(
            fn=cancel_processing,
            inputs=[],
            outputs=[fps_output],
            queue=False
        )

    return app

if __name__ == "__main__":
    app = start_app()
    app.launch()