Spaces:
Running
Running
Create imageAI.py
Browse files- imageAI.py +108 -0
imageAI.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
import google.colab
|
3 |
+
IN_COLAB = True
|
4 |
+
from google.colab import drive,files
|
5 |
+
from google.colab import output
|
6 |
+
drive.mount('/gdrive')
|
7 |
+
Gbase="/gdrive/MyDrive/generate/"
|
8 |
+
cache_dir="/gdrive/MyDrive/hf/"
|
9 |
+
import sys
|
10 |
+
sys.path.append(Gbase)
|
11 |
+
except:
|
12 |
+
IN_COLAB = False
|
13 |
+
Gbase="./"
|
14 |
+
cache_dir="./hf/"
|
15 |
+
|
16 |
+
|
17 |
+
import cv2,os
|
18 |
+
import numpy as np
|
19 |
+
import random,string
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torch.optim as optim
|
24 |
+
from torch.utils.data import Dataset, DataLoader
|
25 |
+
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
print(f"Using device: {device}")
|
28 |
+
|
29 |
+
IMAGE_SIZE = 64
|
30 |
+
NUM_SAMPLES = 1000
|
31 |
+
BATCH_SIZE = 4
|
32 |
+
EPOCHS = 500
|
33 |
+
LEARNING_RATE = 0.001
|
34 |
+
|
35 |
+
class SimpleModel(nn.Module):
|
36 |
+
def __init__(self, path=None):
|
37 |
+
super(SimpleModel, self).__init__()
|
38 |
+
self.conv1 = nn.Conv2d(1, 32, 3, padding=1)
|
39 |
+
self.bn1 = nn.BatchNorm2d(32)
|
40 |
+
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
|
41 |
+
self.bn2 = nn.BatchNorm2d(64)
|
42 |
+
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
|
43 |
+
self.bn3 = nn.BatchNorm2d(128)
|
44 |
+
self.pool = nn.MaxPool2d(2, 2)
|
45 |
+
self.fc1 = nn.Linear(128 * 8 * 8, 512)
|
46 |
+
self.fc2 = nn.Linear(512, 128)
|
47 |
+
self.fc3 = nn.Linear(128, 1)
|
48 |
+
self.dropout = nn.Dropout(0.5)
|
49 |
+
|
50 |
+
if path and os.path.exists(path):
|
51 |
+
self.load_state_dict(torch.load(path, map_location=device))
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = self.pool(F.leaky_relu(self.bn1(self.conv1(x))))
|
55 |
+
x = self.pool(F.leaky_relu(self.bn2(self.conv2(x))))
|
56 |
+
x = self.pool(F.leaky_relu(self.bn3(self.conv3(x))))
|
57 |
+
x = x.view(-1, 128 * 8 * 8)
|
58 |
+
x = F.leaky_relu(self.fc1(x))
|
59 |
+
x = self.dropout(x)
|
60 |
+
x = F.leaky_relu(self.fc2(x))
|
61 |
+
x = self.dropout(x)
|
62 |
+
x = self.fc3(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
def predict(self, image):
|
66 |
+
self.eval()
|
67 |
+
with torch.no_grad():
|
68 |
+
if isinstance(image, str) and os.path.isfile(image):
|
69 |
+
# 如果輸入是圖片文件路徑
|
70 |
+
img = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
|
71 |
+
img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
|
72 |
+
elif isinstance(image, np.ndarray):
|
73 |
+
# 如果輸入是 numpy 數組
|
74 |
+
if image.ndim == 3:
|
75 |
+
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
76 |
+
else:
|
77 |
+
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
78 |
+
img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
|
79 |
+
else:
|
80 |
+
raise ValueError("Input should be an image file path or a numpy array")
|
81 |
+
|
82 |
+
img_tensor = torch.FloatTensor(img).unsqueeze(0).unsqueeze(0) / 255.0
|
83 |
+
img_tensor = img_tensor.to(device)
|
84 |
+
output = self(img_tensor).item()
|
85 |
+
|
86 |
+
# 將輸出四捨五入到最接近的整數
|
87 |
+
num_instructions = round(output)
|
88 |
+
|
89 |
+
# 生成相應數量的繪圖指令
|
90 |
+
instructions = []
|
91 |
+
for _ in range(num_instructions):
|
92 |
+
shape = random.choice(['line', 'rectangle', 'circle', 'ellipse', 'polygon'])
|
93 |
+
if shape == 'line':
|
94 |
+
instructions.append(f"cv2.line(image, {(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE))}, {(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE))}, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
95 |
+
elif shape == 'rectangle':
|
96 |
+
instructions.append(f"cv2.rectangle(image, {(random.randint(0, IMAGE_SIZE-10), random.randint(0, IMAGE_SIZE-10))}, {(random.randint(10, IMAGE_SIZE), random.randint(10, IMAGE_SIZE))}, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
97 |
+
elif shape == 'circle':
|
98 |
+
instructions.append(f"cv2.circle(image, {(random.randint(10, IMAGE_SIZE-10), random.randint(10, IMAGE_SIZE-10))}, {random.randint(5, 30)}, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
99 |
+
elif shape == 'ellipse':
|
100 |
+
instructions.append(f"cv2.ellipse(image, {(random.randint(10, IMAGE_SIZE-10), random.randint(10, IMAGE_SIZE-10))}, {(random.randint(5, 30), random.randint(5, 30))}, {random.randint(0, 360)}, 0, 360, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
101 |
+
elif shape == 'polygon':
|
102 |
+
num_points = random.randint(3, 6)
|
103 |
+
points = [(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE)) for _ in range(num_points)]
|
104 |
+
instructions.append(f"cv2.polylines(image, [np.array({points})], True, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
105 |
+
|
106 |
+
|
107 |
+
return instructions
|
108 |
+
|