Spaces:
Running
Running
Delete imageAI.py
Browse files- imageAI.py +0 -319
imageAI.py
DELETED
@@ -1,319 +0,0 @@
|
|
1 |
-
try:
|
2 |
-
import google.colab
|
3 |
-
IN_COLAB = True
|
4 |
-
from google.colab import drive,files
|
5 |
-
from google.colab import output
|
6 |
-
drive.mount('/gdrive')
|
7 |
-
Gbase="/gdrive/MyDrive/generate/"
|
8 |
-
cache_dir="/gdrive/MyDrive/hf/"
|
9 |
-
import sys
|
10 |
-
sys.path.append(Gbase)
|
11 |
-
except:
|
12 |
-
IN_COLAB = False
|
13 |
-
Gbase="./"
|
14 |
-
cache_dir="./hf/"
|
15 |
-
|
16 |
-
|
17 |
-
import cv2,os
|
18 |
-
import numpy as np
|
19 |
-
import random,string
|
20 |
-
import torch
|
21 |
-
import torch.nn as nn
|
22 |
-
import torch.nn.functional as F
|
23 |
-
import torch.optim as optim
|
24 |
-
from torch.utils.data import Dataset, DataLoader
|
25 |
-
|
26 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
-
print(f"Using device: {device}")
|
28 |
-
|
29 |
-
IMAGE_SIZE = 64
|
30 |
-
NUM_SAMPLES = 1000
|
31 |
-
BATCH_SIZE = 4
|
32 |
-
EPOCHS = 500
|
33 |
-
LEARNING_RATE = 0.001
|
34 |
-
|
35 |
-
|
36 |
-
def generate_sample(num_shapes=1):
|
37 |
-
image = np.zeros((IMAGE_SIZE, IMAGE_SIZE), dtype=np.uint8)
|
38 |
-
instructions = []
|
39 |
-
|
40 |
-
#num_shapes = random.randint(1, 3)
|
41 |
-
for _ in range(num_shapes):
|
42 |
-
shape = random.choice(['line', 'rectangle', 'circle', 'ellipse', 'polygon'])
|
43 |
-
color = random.randint(0, 255)
|
44 |
-
thickness = random.randint(1, 3)
|
45 |
-
|
46 |
-
if shape == 'line':
|
47 |
-
start_point = (random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE))
|
48 |
-
end_point = (random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE))
|
49 |
-
cv2.line(image, start_point, end_point, color, thickness)
|
50 |
-
instructions.append(f"cv2.line(image, {start_point}, {end_point}, {color}, {thickness})")
|
51 |
-
|
52 |
-
elif shape == 'rectangle':
|
53 |
-
start_point = (random.randint(0, IMAGE_SIZE - 10), random.randint(0, IMAGE_SIZE - 10))
|
54 |
-
end_point = (start_point[0] + random.randint(10, IMAGE_SIZE - start_point[0]),
|
55 |
-
start_point[1] + random.randint(10, IMAGE_SIZE - start_point[1]))
|
56 |
-
cv2.rectangle(image, start_point, end_point, color, thickness)
|
57 |
-
instructions.append(f"cv2.rectangle(image, {start_point}, {end_point}, {color}, {thickness})")
|
58 |
-
|
59 |
-
elif shape == 'circle':
|
60 |
-
center = (random.randint(10, IMAGE_SIZE - 10), random.randint(10, IMAGE_SIZE - 10))
|
61 |
-
radius = random.randint(5, min(center[0], center[1], IMAGE_SIZE - center[0], IMAGE_SIZE - center[1]))
|
62 |
-
cv2.circle(image, center, radius, color, thickness)
|
63 |
-
instructions.append(f"cv2.circle(image, {center}, {radius}, {color}, {thickness})")
|
64 |
-
|
65 |
-
elif shape == 'ellipse':
|
66 |
-
center = (random.randint(10, IMAGE_SIZE - 10), random.randint(10, IMAGE_SIZE - 10))
|
67 |
-
axes = (random.randint(5, 30), random.randint(5, 30))
|
68 |
-
angle = random.randint(0, 360)
|
69 |
-
cv2.ellipse(image, center, axes, angle, 0, 360, color, thickness)
|
70 |
-
instructions.append(f"cv2.ellipse(image, {center}, {axes}, {angle}, 0, 360, {color}, {thickness})")
|
71 |
-
|
72 |
-
elif shape == 'polygon':
|
73 |
-
num_points = random.randint(3, 6)
|
74 |
-
points = np.array([(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE)) for _ in range(num_points)], np.int32)
|
75 |
-
points = points.reshape((-1, 1, 2))
|
76 |
-
cv2.polylines(image, [points], True, color, thickness)
|
77 |
-
instructions.append(f"cv2.polylines(image, [{points.tolist()}], True, {color}, {thickness})")
|
78 |
-
|
79 |
-
return {'image': image, 'instructions': instructions}
|
80 |
-
|
81 |
-
def generate_dataset(NUM_SAMPLES=NUM_SAMPLES,maxNumShape=3):
|
82 |
-
dataset = []
|
83 |
-
for _ in range(NUM_SAMPLES):
|
84 |
-
num_shapes = random.randint(1, maxNumShape)
|
85 |
-
sample = generate_sample(num_shapes=num_shapes)
|
86 |
-
dataset.append(sample)
|
87 |
-
return dataset
|
88 |
-
|
89 |
-
class ImageDataset(Dataset):
|
90 |
-
def __init__(self, dataset):
|
91 |
-
self.dataset = dataset
|
92 |
-
|
93 |
-
def __len__(self):
|
94 |
-
return len(self.dataset)
|
95 |
-
|
96 |
-
def __getitem__(self, idx):
|
97 |
-
sample = self.dataset[idx]
|
98 |
-
image = torch.FloatTensor(sample['image']).unsqueeze(0) / 255.0
|
99 |
-
return image, len(sample['instructions'])
|
100 |
-
|
101 |
-
class SimpleModel(nn.Module):
|
102 |
-
def __init__(self, path=None):
|
103 |
-
super(SimpleModel, self).__init__()
|
104 |
-
self.conv1 = nn.Conv2d(1, 32, 3, padding=1)
|
105 |
-
self.bn1 = nn.BatchNorm2d(32)
|
106 |
-
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
|
107 |
-
self.bn2 = nn.BatchNorm2d(64)
|
108 |
-
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
|
109 |
-
self.bn3 = nn.BatchNorm2d(128)
|
110 |
-
self.pool = nn.MaxPool2d(2, 2)
|
111 |
-
self.fc1 = nn.Linear(128 * 8 * 8, 512)
|
112 |
-
self.fc2 = nn.Linear(512, 128)
|
113 |
-
self.fc3 = nn.Linear(128, 1)
|
114 |
-
self.dropout = nn.Dropout(0.5)
|
115 |
-
|
116 |
-
if path and os.path.exists(path):
|
117 |
-
self.load_state_dict(torch.load(path, map_location=device))
|
118 |
-
|
119 |
-
def forward(self, x):
|
120 |
-
x = self.pool(F.leaky_relu(self.bn1(self.conv1(x))))
|
121 |
-
x = self.pool(F.leaky_relu(self.bn2(self.conv2(x))))
|
122 |
-
x = self.pool(F.leaky_relu(self.bn3(self.conv3(x))))
|
123 |
-
x = x.view(-1, 128 * 8 * 8)
|
124 |
-
x = F.leaky_relu(self.fc1(x))
|
125 |
-
x = self.dropout(x)
|
126 |
-
x = F.leaky_relu(self.fc2(x))
|
127 |
-
x = self.dropout(x)
|
128 |
-
x = self.fc3(x)
|
129 |
-
return x
|
130 |
-
|
131 |
-
def predict(self, image):
|
132 |
-
self.eval()
|
133 |
-
with torch.no_grad():
|
134 |
-
if isinstance(image, str) and os.path.isfile(image):
|
135 |
-
# 如果輸入是圖片文件路徑
|
136 |
-
img = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
|
137 |
-
img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
|
138 |
-
elif isinstance(image, np.ndarray):
|
139 |
-
# 如果輸入是 numpy 數組
|
140 |
-
if image.ndim == 3:
|
141 |
-
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
142 |
-
else:
|
143 |
-
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
144 |
-
img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
|
145 |
-
else:
|
146 |
-
raise ValueError("Input should be an image file path or a numpy array")
|
147 |
-
|
148 |
-
img_tensor = torch.FloatTensor(img).unsqueeze(0).unsqueeze(0) / 255.0
|
149 |
-
img_tensor = img_tensor.to(device)
|
150 |
-
output = self(img_tensor).item()
|
151 |
-
|
152 |
-
# 將輸出四捨五入到最接近的整數
|
153 |
-
num_instructions = round(output)
|
154 |
-
|
155 |
-
# 生成相應數量的繪圖指令
|
156 |
-
instructions = []
|
157 |
-
for _ in range(num_instructions):
|
158 |
-
shape = random.choice(['line', 'rectangle', 'circle', 'ellipse', 'polygon'])
|
159 |
-
if shape == 'line':
|
160 |
-
instructions.append(f"cv2.line(image, {(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE))}, {(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE))}, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
161 |
-
elif shape == 'rectangle':
|
162 |
-
instructions.append(f"cv2.rectangle(image, {(random.randint(0, IMAGE_SIZE-10), random.randint(0, IMAGE_SIZE-10))}, {(random.randint(10, IMAGE_SIZE), random.randint(10, IMAGE_SIZE))}, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
163 |
-
elif shape == 'circle':
|
164 |
-
instructions.append(f"cv2.circle(image, {(random.randint(10, IMAGE_SIZE-10), random.randint(10, IMAGE_SIZE-10))}, {random.randint(5, 30)}, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
165 |
-
elif shape == 'ellipse':
|
166 |
-
instructions.append(f"cv2.ellipse(image, {(random.randint(10, IMAGE_SIZE-10), random.randint(10, IMAGE_SIZE-10))}, {(random.randint(5, 30), random.randint(5, 30))}, {random.randint(0, 360)}, 0, 360, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
167 |
-
elif shape == 'polygon':
|
168 |
-
num_points = random.randint(3, 6)
|
169 |
-
points = [(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE)) for _ in range(num_points)]
|
170 |
-
instructions.append(f"cv2.polylines(image, [np.array({points})], True, {random.randint(0, 255)}, {random.randint(1, 3)})")
|
171 |
-
|
172 |
-
|
173 |
-
return instructions
|
174 |
-
|
175 |
-
def train(model, train_loader, optimizer, criterion):
|
176 |
-
model.train()
|
177 |
-
total_loss = 0
|
178 |
-
for batch_idx, (data, target) in enumerate(train_loader):
|
179 |
-
data, target = data.to(device), target.float().to(device)
|
180 |
-
optimizer.zero_grad()
|
181 |
-
output = model(data).squeeze()
|
182 |
-
loss = criterion(output, target)
|
183 |
-
loss.backward()
|
184 |
-
optimizer.step()
|
185 |
-
total_loss += loss.item()
|
186 |
-
if batch_idx % 100 == 0:
|
187 |
-
print(f'Train Batch {batch_idx}/{len(train_loader)} Loss: {loss.item():.6f}')
|
188 |
-
return total_loss / len(train_loader)
|
189 |
-
|
190 |
-
def test(model, test_loader, criterion, print_predictions=False):
|
191 |
-
model.eval()
|
192 |
-
test_loss = 0
|
193 |
-
all_predictions = []
|
194 |
-
all_targets = []
|
195 |
-
with torch.no_grad():
|
196 |
-
for data, target in test_loader:
|
197 |
-
data, target = data.to(device), target.float().to(device)
|
198 |
-
output = model(data).squeeze()
|
199 |
-
test_loss += criterion(output, target).item()
|
200 |
-
all_predictions.extend(output.cpu().numpy())
|
201 |
-
all_targets.extend(target.cpu().numpy())
|
202 |
-
|
203 |
-
test_loss /= len(test_loader)
|
204 |
-
print(f'Test set: Average loss: {test_loss:.4f}')
|
205 |
-
|
206 |
-
if print_predictions:
|
207 |
-
print("Sample predictions:")
|
208 |
-
for pred, targ in zip(all_predictions[:10], all_targets[:10]):
|
209 |
-
print(f"Prediction: {pred:.2f}, Target: {targ:.2f}")
|
210 |
-
|
211 |
-
return test_loss, all_predictions, all_targets
|
212 |
-
|
213 |
-
def train1(NUM_SAMPLES=NUM_SAMPLES, maxNumShape=1, EPOCHS=EPOCHS):
|
214 |
-
model = SimpleModel(path=os.path.join(Gbase, 'best_model.pth')).to(device)
|
215 |
-
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
216 |
-
|
217 |
-
optimizer_path = os.path.join(Gbase, 'optimizer.pth')
|
218 |
-
if os.path.exists(optimizer_path):
|
219 |
-
print("Loading optimizer state...")
|
220 |
-
optimizer.load_state_dict(torch.load(optimizer_path, map_location=device))
|
221 |
-
|
222 |
-
criterion = nn.MSELoss()
|
223 |
-
|
224 |
-
seed = 618 * 382 * 33
|
225 |
-
random.seed(seed)
|
226 |
-
np.random.seed(seed)
|
227 |
-
torch.manual_seed(seed)
|
228 |
-
if torch.cuda.is_available():
|
229 |
-
torch.cuda.manual_seed(seed)
|
230 |
-
|
231 |
-
dataset = generate_dataset(NUM_SAMPLES=NUM_SAMPLES, maxNumShape=maxNumShape)
|
232 |
-
train_size = int(0.8 * len(dataset))
|
233 |
-
train_dataset = ImageDataset(dataset[:train_size])
|
234 |
-
test_dataset = ImageDataset(dataset[train_size:])
|
235 |
-
|
236 |
-
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
237 |
-
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
238 |
-
|
239 |
-
best_loss = float('inf')
|
240 |
-
|
241 |
-
for epoch in range(EPOCHS):
|
242 |
-
print(f'Epoch {epoch+1}/{EPOCHS}')
|
243 |
-
train_loss = train(model, train_loader, optimizer, criterion)
|
244 |
-
test_loss, predictions, targets = test(model, test_loader, criterion, print_predictions=True)
|
245 |
-
|
246 |
-
if test_loss < best_loss:
|
247 |
-
best_loss = test_loss
|
248 |
-
torch.save(model.state_dict(), os.path.join(Gbase, 'best_model.pth'))
|
249 |
-
torch.save(optimizer.state_dict(), os.path.join(Gbase, 'optimizer.pth'))
|
250 |
-
print(f"New best model saved with test loss: {best_loss:.4f}")
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
def main():
|
256 |
-
# Set random seed
|
257 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
258 |
-
model = SimpleModel(path=Gbase+ 'best_model.pth').to(device)
|
259 |
-
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
260 |
-
if os.path.exists(Gbase+'optimizer.pth'):
|
261 |
-
print("Loading optimizer state...")
|
262 |
-
optimizer.load_state_dict(torch.load('optimizer.pth'))
|
263 |
-
criterion = nn.MSELoss()
|
264 |
-
test_image =Gbase+"image.jpg"
|
265 |
-
# np.random.randint(0, 256, (IMAGE_SIZE, IMAGE_SIZE), dtype=np.uint8)
|
266 |
-
instructions = model.predict(test_image)
|
267 |
-
print("Generated instructions:")
|
268 |
-
for instruction in instructions:
|
269 |
-
print(instruction)
|
270 |
-
# 檢查是否存在已保存的優化器狀態
|
271 |
-
|
272 |
-
#return
|
273 |
-
seed = 618 * 382 * 33
|
274 |
-
random.seed(seed)
|
275 |
-
np.random.seed(seed)
|
276 |
-
torch.manual_seed(seed)
|
277 |
-
|
278 |
-
# Generate dataset
|
279 |
-
dataset = generate_dataset()
|
280 |
-
|
281 |
-
# Split dataset into train and test
|
282 |
-
train_size = int(0.8 * len(dataset))
|
283 |
-
train_dataset = ImageDataset(dataset[:train_size])
|
284 |
-
test_dataset = ImageDataset(dataset[train_size:])
|
285 |
-
|
286 |
-
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
287 |
-
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
best_loss = float('inf')
|
292 |
-
|
293 |
-
for epoch in range(EPOCHS):
|
294 |
-
print(f'Epoch {epoch+1}/{EPOCHS}')
|
295 |
-
train_loss = train(model, train_loader, optimizer, criterion, device)
|
296 |
-
test_loss, predictions, targets = test(model, test_loader, criterion, device, print_predictions=True)
|
297 |
-
|
298 |
-
if test_loss < best_loss:
|
299 |
-
best_loss = test_loss
|
300 |
-
torch.save(model.state_dict(),Gbase+ 'best_model.pth')
|
301 |
-
torch.save(optimizer.state_dict(),Gbase+ 'optimizer.pth')
|
302 |
-
print(f"New best model saved with test loss: {best_loss:.4f}")
|
303 |
-
|
304 |
-
# 測試 predict 方法
|
305 |
-
|
306 |
-
|
307 |
-
if __name__ == "__main__":
|
308 |
-
train1(NUM_SAMPLES=1000 ,maxNumShape=1, EPOCHS=100)
|
309 |
-
train1(NUM_SAMPLES=1000 ,maxNumShape=1, EPOCHS=100)
|
310 |
-
train1(NUM_SAMPLES=1000 ,maxNumShape=1, EPOCHS=100)
|
311 |
-
train1(NUM_SAMPLES=10000 ,maxNumShape=2, EPOCHS=10)
|
312 |
-
train1(NUM_SAMPLES=10000 ,maxNumShape=3, EPOCHS=10)
|
313 |
-
train1(NUM_SAMPLES=100000 ,maxNumShape=5, EPOCHS=10)
|
314 |
-
train1(NUM_SAMPLES=100000 ,maxNumShape=5, EPOCHS=10)
|
315 |
-
train1(NUM_SAMPLES=100000 ,maxNumShape=5, EPOCHS=10)
|
316 |
-
while True:
|
317 |
-
train1(NUM_SAMPLES=100000 ,maxNumShape=8, EPOCHS=10)
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|