File size: 12,649 Bytes
77cd821
54130af
 
 
 
 
 
 
 
 
77cd821
54130af
 
 
77cd821
54130af
 
77cd821
54130af
77cd821
 
 
 
 
 
 
 
 
 
 
54130af
77cd821
 
 
54130af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77cd821
 
 
54130af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77cd821
 
 
 
 
 
54130af
 
 
 
 
 
 
 
 
 
77cd821
54130af
77cd821
 
 
 
 
 
 
 
54130af
77cd821
 
54130af
 
77cd821
 
 
 
54130af
77cd821
 
 
 
 
 
 
54130af
 
 
 
77cd821
54130af
77cd821
54130af
77cd821
 
 
54130af
77cd821
 
 
54130af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
try:
    import google.colab
    IN_COLAB = True
    from google.colab import drive, files
    from google.colab import output
    drive.mount('/gdrive')
    Gbase = "/gdrive/MyDrive/generate/"
    cache_dir = "/gdrive/MyDrive/hf/"
    import sys
    sys.path.append(Gbase)
except:
    IN_COLAB = False
    Gbase = "./"
    cache_dir = "./hf/"

import cv2
import os
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

IMAGE_SIZE = 64
NUM_SAMPLES = 1000
BATCH_SIZE = 200
EPOCHS = 500
LEARNING_RATE = 0.001

def generate_sample(num_shapes=1):
    image = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 3), dtype=np.uint8)
    instructions = []
    
    for _ in range(num_shapes):
        shape = random.choice(['rectangle', 'circle', 'ellipse', 'polygon'])
        color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
        
        if shape == 'rectangle':
            start_point = (random.randint(0, IMAGE_SIZE - 10), random.randint(0, IMAGE_SIZE - 10))
            end_point = (start_point[0] + random.randint(10, IMAGE_SIZE - start_point[0]),
                         start_point[1] + random.randint(10, IMAGE_SIZE - start_point[1]))
            cv2.rectangle(image, start_point, end_point, color, -1)
            instructions.append(f"cv2.rectangle(image, {start_point}, {end_point}, {color}, -1)")
        
        elif shape == 'circle':
            center = (random.randint(10, IMAGE_SIZE - 10), random.randint(10, IMAGE_SIZE - 10))
            radius = random.randint(5, min(center[0], center[1], IMAGE_SIZE - center[0], IMAGE_SIZE - center[1]))
            cv2.circle(image, center, radius, color, -1)
            instructions.append(f"cv2.circle(image, {center}, {radius}, {color}, -1)")
        
        elif shape == 'ellipse':
            center = (random.randint(10, IMAGE_SIZE - 10), random.randint(10, IMAGE_SIZE - 10))
            axes = (random.randint(5, 30), random.randint(5, 30))
            angle = random.randint(0, 360)
            cv2.ellipse(image, center, axes, angle, 0, 360, color, -1)
            instructions.append(f"cv2.ellipse(image, {center}, {axes}, {angle}, 0, 360, {color}, -1)")
        
        elif shape == 'polygon':
            num_points = random.randint(3, 6)
            points = np.array([(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE)) for _ in range(num_points)], np.int32)
            points = points.reshape((-1, 1, 2))
            cv2.fillPoly(image, [points], color)
            instructions.append(f"cv2.fillPoly(image, [{points.tolist()}], {color})")
    
    return {'image': image, 'instructions': instructions}

def generate_dataset(NUM_SAMPLES=NUM_SAMPLES, maxNumShape=3):
    dataset = []
    for _ in range(NUM_SAMPLES):
        num_shapes = random.randint(1, maxNumShape)
        sample = generate_sample(num_shapes=num_shapes)
        dataset.append(sample)
    return dataset

class ImageDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset
    
    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        sample = self.dataset[idx]
        image = torch.FloatTensor(sample['image']).permute(2, 0, 1) / 255.0
        return image, len(sample['instructions'])

class SelfAttention(nn.Module):
    def __init__(self, in_channels):
        super(SelfAttention, self).__init__()
        self.query = nn.Conv2d(in_channels, in_channels // 8, 1)
        self.key = nn.Conv2d(in_channels, in_channels // 8, 1)
        self.value = nn.Conv2d(in_channels, in_channels, 1)
        self.gamma = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        batch_size, C, width, height = x.size()
        
        proj_query = self.query(x).view(batch_size, -1, width * height).permute(0, 2, 1)
        proj_key = self.key(x).view(batch_size, -1, width * height)
        energy = torch.bmm(proj_query, proj_key)
        attention = F.softmax(energy, dim=-1)
        
        proj_value = self.value(x).view(batch_size, -1, width * height)
        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(batch_size, C, width, height)
        
        out = self.gamma * out + x
        return out

class SimpleModel(nn.Module):
    def __init__(self, path=None):
        super(SimpleModel, self).__init__()
        
        self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(64)
        self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(128)
        self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
        self.bn3 = nn.BatchNorm2d(256)
        self.conv4 = nn.Conv2d(256, 256, 3, padding=1)
        self.bn4 = nn.BatchNorm2d(256)
        
        self.pool = nn.AdaptiveAvgPool2d((8, 8))
        
        self.attention = SelfAttention(256)
        
        self.fc1 = nn.Linear(256 * 8 * 8, 1024)
        self.fc2 = nn.Linear(1024, 256)
        self.fc3 = nn.Linear(256, 1)
        
        self.dropout = nn.Dropout(0.5)
        
        if path and os.path.exists(path):
            self.load_state_dict(torch.load(path, map_location=device))
    
    def forward(self, x):
        x = self.pool(F.mish(self.bn1(self.conv1(x))))
        x = self.pool(F.mish(self.bn2(self.conv2(x))))
        x = F.mish(self.bn3(self.conv3(x)))
        x = F.mish(self.bn4(self.conv4(x)))
        
        x = self.attention(x)
        
        x = self.pool(x)
        x = x.view(-1, 256 * 8 * 8)
        x = F.mish(self.fc1(x))
        x = self.dropout(x)
        x = F.mish(self.fc2(x))
        x = self.dropout(x)
        x = self.fc3(x)
        return x

    def predict(self, image):
        self.eval()
        with torch.no_grad():
            if isinstance(image, str) and os.path.isfile(image):
                img = cv2.imread(image)
                img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
            elif isinstance(image, np.ndarray):
                if image.ndim == 2:
                    img = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
                img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
            else:
                raise ValueError("Input should be an image file path or a numpy array")
            
            img_tensor = torch.FloatTensor(img).permute(2, 0, 1).unsqueeze(0) / 255.0
            img_tensor = img_tensor.to(device)
            output = self(img_tensor).item()
            
            num_instructions = round(output)
            
            instructions = []
            for _ in range(num_instructions):
                shape = random.choice(['rectangle', 'circle', 'ellipse', 'polygon'])
                color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
                if shape == 'rectangle':
                    instructions.append(f"cv2.rectangle(image, {(random.randint(0, IMAGE_SIZE-10), random.randint(0, IMAGE_SIZE-10))}, {(random.randint(10, IMAGE_SIZE), random.randint(10, IMAGE_SIZE))}, {color}, -1)")
                elif shape == 'circle':
                    instructions.append(f"cv2.circle(image, {(random.randint(10, IMAGE_SIZE-10), random.randint(10, IMAGE_SIZE-10))}, {random.randint(5, 30)}, {color}, -1)")
                elif shape == 'ellipse':
                    instructions.append(f"cv2.ellipse(image, {(random.randint(10, IMAGE_SIZE-10), random.randint(10, IMAGE_SIZE-10))}, {(random.randint(5, 30), random.randint(5, 30))}, {random.randint(0, 360)}, 0, 360, {color}, -1)")
                elif shape == 'polygon':
                    num_points = random.randint(3, 6)
                    points = [(random.randint(0, IMAGE_SIZE), random.randint(0, IMAGE_SIZE)) for _ in range(num_points)]
                    instructions.append(f"cv2.fillPoly(image, [np.array({points})], {color})")
            
            return instructions

def train(model, train_loader, optimizer, criterion):
    model.train()
    total_loss = 0
    correct_predictions = 0
    total_predictions = 0
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.float().to(device)
        optimizer.zero_grad()
        output = model(data).squeeze()
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
        
        # Count correct predictions
        predicted = torch.round(output)
        correct_predictions += (predicted == target).sum().item()
        total_predictions += target.size(0)
        
        if batch_idx % 3000 == 0:
            print(f'Train Batch {batch_idx}/{len(train_loader)} Loss: {loss.item():.6f}')
    
    accuracy = correct_predictions / total_predictions
    return total_loss / len(train_loader), accuracy

def test(model, test_loader, criterion, print_predictions=False):
    model.eval()
    test_loss = 0
    correct_predictions = 0
    total_predictions = 0
    all_predictions = []
    all_targets = []
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.float().to(device)
            output = model(data).squeeze()
            test_loss += criterion(output, target).item()
            
            predicted = torch.round(output)
            correct_predictions += (predicted == target).sum().item()
            total_predictions += target.size(0)
            
            all_predictions.extend(output.cpu().numpy())
            all_targets.extend(target.cpu().numpy())
    
    test_loss /= len(test_loader)
    accuracy = correct_predictions / total_predictions
    print(f'Test set: Average loss: {test_loss:.4f}, Accuracy: {accuracy:.4f}')
    
    if print_predictions:
        print("Sample predictions:")
        for pred, targ in zip(all_predictions[:10], all_targets[:10]):
            print(f"Prediction: {pred:.2f}, Target: {targ:.2f}")
    
    return test_loss, accuracy, all_predictions, all_targets

def train1(NUM_SAMPLES=NUM_SAMPLES, maxNumShape=1, EPOCHS=EPOCHS):
    model = SimpleModel(path=os.path.join(Gbase, 'best_model.pth')).to(device)
    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
    
    optimizer_path = os.path.join(Gbase, 'optimizer.pth')
    if os.path.exists(optimizer_path):
        print("Loading optimizer state...")
        optimizer.load_state_dict(torch.load(optimizer_path, map_location=device))
    
    criterion = nn.MSELoss()
    
    seed = 618 * 382 * 33
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)

    dataset = generate_dataset(NUM_SAMPLES=NUM_SAMPLES, maxNumShape=maxNumShape)
    train_size = int(0.8 * len(dataset))
    train_dataset = ImageDataset(dataset[:train_size])
    test_dataset = ImageDataset(dataset[train_size:])

    train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)

    best_loss = float('inf')
    best_accuracy = 0

    for epoch in range(EPOCHS):
        print(f'Epoch {epoch+1}/{EPOCHS}')
        train_loss, train_accuracy = train(model, train_loader, optimizer, criterion)
        test_loss, test_accuracy, predictions, targets = test(model, test_loader, criterion, print_predictions=True)
        
        print(f'Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}')
        print(f'Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}')
        
        if test_accuracy > best_accuracy or (test_accuracy == best_accuracy and test_loss < best_loss):
            best_accuracy = test_accuracy
            best_loss = test_loss
            torch.save(model.state_dict(), os.path.join(Gbase, 'best_model.pth') ,_use_new_zipfile_serialization=False )
            torch.save(optimizer.state_dict(), os.path.join(Gbase, 'optimizer.pth') ,_use_new_zipfile_serialization=False)
            print(f"New best model saved with test accuracy: {best_accuracy:.4f} and test loss: {best_loss:.4f}")
    

if __name__ == "__main__":
    train1(NUM_SAMPLES=1000 ,maxNumShape=1, EPOCHS=50)
    train1(NUM_SAMPLES=1000 ,maxNumShape=1, EPOCHS=50)
    train1(NUM_SAMPLES=1000 ,maxNumShape=1, EPOCHS=50)
    train1(NUM_SAMPLES=10000 ,maxNumShape=3, EPOCHS=50)
    train1(NUM_SAMPLES=10000 ,maxNumShape=3, EPOCHS=50)
    train1(NUM_SAMPLES=10000 ,maxNumShape=5, EPOCHS=50)
    while True:
        train1(NUM_SAMPLES=100000 ,maxNumShape=10, EPOCHS=5)