louiecerv's picture
sync with remote
aa6a41a
import streamlit as st
import tensorflow as tf
import os
import requests
import tempfile
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Reshape
from tensorflow.keras.losses import SparseCategoricalCrossentropy
from io import StringIO
import datetime
import tensorboard
from tensorboard import program
try:
# Check if a GPU is available
gpu = len(tf.config.list_physical_devices('GPU')) > 0
if gpu:
st.write("GPU is available!") # Inform the user
# Set TensorFlow to use the GPU if available (optional, usually automatic)
# You can specify which GPU if you have multiple:
# tf.config.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU') # Use the first GPU
# or
# tf.config.experimental.set_memory_growth(tf.config.list_physical_devices('GPU')[0], True) # Memory growth for the first GPU
# or
# strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"]) # Use multiple GPUs
else:
st.write("GPU is not available. Using CPU.")
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force CPU usage (optional)
except RuntimeError as e:
st.write(f"Error checking GPU: {e}")
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force CPU usage if there is a runtime error
def run_tensorboard(log_dir):
# Start TensorBoard
tb = program.TensorBoard()
tb.configure(argv=[None, '--logdir', log_dir])
url = tb.launch()
return url
# Constants for dataset information
TRAIN_FILE = "train_images.tfrecords"
VAL_FILE = "val_images.tfrecords"
TRAIN_URL = "https://huggingface.co/datasets/louiecerv/cardiac_images/resolve/main/train_images.tfrecords"
VAL_URL = "https://huggingface.co/datasets/louiecerv/cardiac_images/resolve/main/val_images.tfrecords"
# Use a persistent temp directory
tmpdir = tempfile.gettempdir()
# Function to download a file with progress display
def download_file(url, local_filename, target_dir):
os.makedirs(target_dir, exist_ok=True)
filepath = os.path.join(target_dir, local_filename)
if os.path.exists(filepath):
st.write(f"File already exists: {filepath}")
return filepath
with requests.get(url, stream=True) as r:
r.raise_for_status()
total_size = int(r.headers.get('content-length', 0))
progress_bar = st.empty() # Create a placeholder
with open(filepath, 'wb') as f:
downloaded_size = 0
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
downloaded_size += len(chunk)
progress_percent = int(downloaded_size / total_size * 100)
progress_bar.progress(progress_percent, text=f"Downloading {local_filename}...")
return filepath
# Download only if files are missing
train_file_path = download_file(TRAIN_URL, TRAIN_FILE, tmpdir)
val_file_path = download_file(VAL_URL, VAL_FILE, tmpdir)
# Dictionary describing the fields stored in TFRecord
image_feature_description = {
'height': tf.io.FixedLenFeature([], tf.int64),
'width': tf.io.FixedLenFeature([], tf.int64),
'depth': tf.io.FixedLenFeature([], tf.int64),
'name': tf.io.FixedLenFeature([], tf.string),
'image_raw': tf.io.FixedLenFeature([], tf.string),
'label_raw': tf.io.FixedLenFeature([], tf.string),
}
# Helper function to parse the image and label data from TFRecord
def _parse_image_function(example_proto):
return tf.io.parse_single_example(example_proto, image_feature_description)
# Function to read and decode an example from the dataset
@tf.function
def read_and_decode(example):
image_raw = tf.io.decode_raw(example['image_raw'], tf.int64)
image_raw.set_shape([65536])
image = tf.reshape(image_raw, [256, 256, 1])
image = tf.cast(image, tf.float32) * (1. / 1024)
label_raw = tf.io.decode_raw(example['label_raw'], tf.uint8)
label_raw.set_shape([65536])
label = tf.reshape(label_raw, [256, 256, 1])
return image, label
# Load and parse datasets
raw_training_dataset = tf.data.TFRecordDataset(train_file_path)
raw_val_dataset = tf.data.TFRecordDataset(val_file_path)
parsed_training_dataset = raw_training_dataset.map(_parse_image_function)
parsed_val_dataset = raw_val_dataset.map(_parse_image_function)
# Prepare datasets
tf_autotune = tf.data.experimental.AUTOTUNE
train = parsed_training_dataset.map(read_and_decode, num_parallel_calls=tf_autotune)
val = parsed_val_dataset.map(read_and_decode)
BUFFER_SIZE = 10
BATCH_SIZE = 1
train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset = train_dataset.prefetch(buffer_size=tf_autotune)
test_dataset = val.batch(BATCH_SIZE)
st.write(train_dataset)
# function to take a prediction from the model and output an image for display
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
def display(display_list):
fig = plt.figure(figsize=(10, 10))
title = ['Input Image', 'Label', 'Prediction'] # Updated title list
for i in range(len(display_list)):
ax = fig.add_subplot(1, len(display_list), i + 1)
display_resized = tf.reshape(display_list[i], [256, 256])
ax.set_title(title[i]) # No longer out of range
ax.imshow(display_resized, cmap='gray')
ax.axis('off')
st.pyplot(fig)
# helper function to show the image, the label and the prediction
def show_predictions(dataset=None, num=1):
if dataset:
for image, label in dataset.take(num):
pred_mask = model.predict(image)
display([image[0], label[0], create_mask(pred_mask)])
else:
prediction = create_mask(model.predict(sample_image[tf.newaxis, ...]))
display([sample_image, sample_label, prediction])
# define a callback that shows image predictions on the test set
class DisplayCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
show_predictions()
st.write('\nSample Prediction after epoch {}\n'.format(epoch+1))
# Streamlit app interface
st.title("Cardiac Images Dataset")
# Display sample images
for image, label in train.take(2):
sample_image, sample_label = image, label
display([sample_image, sample_label])
tf.keras.backend.clear_session()
# set up the model architecture
model = tf.keras.models.Sequential([
tf.keras.layers.Input(shape=(256, 256, 1)), # Define input shape
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(256*256*2, activation='softmax'),
tf.keras.layers.Reshape((256, 256, 2))
])
# specify how to train the model with algorithm, the loss function and metrics
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# Capture the model summary
model_summary = StringIO()
model.summary(print_fn=lambda x: model_summary.write(x + '\n'))
# Display the model summary in Streamlit
st.markdown(model_summary.getvalue())
try:
# Save the model plot
plot_filename = "model_plot.png"
tf.keras.utils.plot_model(model, to_file=plot_filename, show_shapes=True)
except Exception as e:
st.error(f"An error occurred: {e}")
# Streamlit App
st.title("Model Architecture")
# Display the model plot
st.image(plot_filename, caption="Neural Network Architecture", use_container_width=True)
# show a predection, as an example
show_predictions(test_dataset)
# setup a tensorboard callback
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
if st.button("Train Model"):
# setup and run the model
EPOCHS = 20
STEPS_PER_EPOCH = len(list(parsed_training_dataset))
VALIDATION_STEPS = 26
model_history = model.fit(train_dataset, epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS,
validation_data=test_dataset,
callbacks=[DisplayCallback(), tensorboard_callback])
# output model statistics
loss = model_history.history['loss']
val_loss = model_history.history['val_loss']
accuracy = model_history.history['accuracy']
val_accuracy = model_history.history['val_accuracy']
epochs = range(EPOCHS)
st.title('Training and Validation Loss') # Optional title for the Streamlit app
fig, ax = plt.subplots() # Create a figure and an axes object
ax.plot(epochs, loss, 'r', label='Training loss')
ax.plot(epochs, val_loss, 'bo', label='Validation loss')
ax.set_title('Training and Validation Loss') #Set title for the axes
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss Value')
ax.set_ylim([0, 1])
ax.legend()
st.pyplot(fig) # Display the plot in Streamlit
if st.button("Evaluate Model"):
# Evaluate the model
evaluation_results = model.evaluate(test_dataset, verbose=0) # Set verbose=0 to suppress console output
# Assuming model.metrics_names provides labels for evaluation_results
results_dict = dict(zip(model.metrics_names, evaluation_results))
st.subheader("Model Evaluation Results")
# Display each metric and its corresponding value
for metric, value in results_dict.items():
st.write(f"**{metric.capitalize()}:** {value:.4f}")
if st.button("Show TensorBoard"):
# Create a log directory for TensorBoard
log_dir = "logs"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# Run TensorBoard
url = run_tensorboard(log_dir)
# Display TensorBoard in an iframe
st.markdown(f"<iframe src='{url}' width='100%' height='800'></iframe>", unsafe_allow_html=True)
if st.button("CNN"):
tf.keras.backend.clear_session()
inputs = tf.keras.Input(shape=(256, 256, 1), name="InputLayer")
x = tf.keras.layers.Conv2D(filters=100, kernel_size=5, strides=2, padding="same",
activation="relu", name="Conv1")(inputs)
x = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding="same")(x)
x = tf.keras.layers.Conv2D(filters=200, kernel_size=5, strides=2, padding="same",
activation="relu", name="Conv2")(x)
x = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding="same")(x)
x = tf.keras.layers.Conv2D(filters=300, kernel_size=3, strides=1, padding="same",
activation="relu", name="Conv3")(x)
x = tf.keras.layers.Conv2D(filters=300, kernel_size=3, strides=1, padding="same",
activation="relu", name="Conv4")(x)
x = tf.keras.layers.Conv2D(filters=2, kernel_size=1, strides=1, padding="same",
activation="relu", name="Conv5")(x)
outputs = tf.keras.layers.Conv2DTranspose(filters=2, kernel_size=31, strides=16,
padding="same", activation="softmax",
name="UpSampling")(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs, name="CNN_Segmentation")
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy']
)
# Capture the model summary
model_summary = StringIO()
model.summary(print_fn=lambda x: model_summary.write(x + '\n'))
# plot the model including the sizes of the model
tf.keras.utils.plot_model(model, show_shapes=True)
# show a predection, as an example
show_predictions(test_dataset)
# Initialize new directories for new task
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
# setup and run the model
EPOCHS = 20
STEPS_PER_EPOCH = len(list(parsed_training_dataset))
VALIDATION_STEPS = 26
model_history = model.fit(train_dataset, epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS,
validation_data=test_dataset,
callbacks=[DisplayCallback(), tensorboard_callback])
# output model statistics
loss = model_history.history['loss']
val_loss = model_history.history['val_loss']
accuracy = model_history.history['accuracy']
val_accuracy = model_history.history['val_accuracy']
epochs = range(EPOCHS)
st.title('Training and Validation Loss') # Optional title for the Streamlit app
fig, ax = plt.subplots() # Create a figure and an axes object
ax.plot(epochs, loss, 'r', label='Training loss')
ax.plot(epochs, val_loss, 'bo', label='Validation loss')
ax.set_title('Training and Validation Loss') #Set title for the axes
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss Value')
ax.set_ylim([0, 1])
ax.legend()
st.pyplot(fig) # Display the plot in Streamlit