Spaces:
Running
Running
File size: 13,225 Bytes
d06cee5 1f68d20 17f36b6 d06cee5 7ee901b d06cee5 7ee901b d06cee5 7ee901b d06cee5 7ee901b 1f68d20 d06cee5 781fd86 d06cee5 781fd86 aa6a41a 7ee901b aa6a41a 7ee901b 1f68d20 17f36b6 1f68d20 17f36b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import streamlit as st
import tensorflow as tf
import os
import requests
import tempfile
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Reshape
from tensorflow.keras.losses import SparseCategoricalCrossentropy
from io import StringIO
import datetime
import tensorboard
from tensorboard import program
try:
# Check if a GPU is available
gpu = len(tf.config.list_physical_devices('GPU')) > 0
if gpu:
st.write("GPU is available!") # Inform the user
# Set TensorFlow to use the GPU if available (optional, usually automatic)
# You can specify which GPU if you have multiple:
# tf.config.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU') # Use the first GPU
# or
# tf.config.experimental.set_memory_growth(tf.config.list_physical_devices('GPU')[0], True) # Memory growth for the first GPU
# or
# strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"]) # Use multiple GPUs
else:
st.write("GPU is not available. Using CPU.")
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force CPU usage (optional)
except RuntimeError as e:
st.write(f"Error checking GPU: {e}")
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force CPU usage if there is a runtime error
def run_tensorboard(log_dir):
# Start TensorBoard
tb = program.TensorBoard()
tb.configure(argv=[None, '--logdir', log_dir])
url = tb.launch()
return url
# Constants for dataset information
TRAIN_FILE = "train_images.tfrecords"
VAL_FILE = "val_images.tfrecords"
TRAIN_URL = "https://huggingface.co/datasets/louiecerv/cardiac_images/resolve/main/train_images.tfrecords"
VAL_URL = "https://huggingface.co/datasets/louiecerv/cardiac_images/resolve/main/val_images.tfrecords"
# Use a persistent temp directory
tmpdir = tempfile.gettempdir()
# Function to download a file with progress display
def download_file(url, local_filename, target_dir):
os.makedirs(target_dir, exist_ok=True)
filepath = os.path.join(target_dir, local_filename)
if os.path.exists(filepath):
st.write(f"File already exists: {filepath}")
return filepath
with requests.get(url, stream=True) as r:
r.raise_for_status()
total_size = int(r.headers.get('content-length', 0))
progress_bar = st.empty() # Create a placeholder
with open(filepath, 'wb') as f:
downloaded_size = 0
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
downloaded_size += len(chunk)
progress_percent = int(downloaded_size / total_size * 100)
progress_bar.progress(progress_percent, text=f"Downloading {local_filename}...")
return filepath
# Download only if files are missing
train_file_path = download_file(TRAIN_URL, TRAIN_FILE, tmpdir)
val_file_path = download_file(VAL_URL, VAL_FILE, tmpdir)
# Dictionary describing the fields stored in TFRecord
image_feature_description = {
'height': tf.io.FixedLenFeature([], tf.int64),
'width': tf.io.FixedLenFeature([], tf.int64),
'depth': tf.io.FixedLenFeature([], tf.int64),
'name': tf.io.FixedLenFeature([], tf.string),
'image_raw': tf.io.FixedLenFeature([], tf.string),
'label_raw': tf.io.FixedLenFeature([], tf.string),
}
# Helper function to parse the image and label data from TFRecord
def _parse_image_function(example_proto):
return tf.io.parse_single_example(example_proto, image_feature_description)
# Function to read and decode an example from the dataset
@tf.function
def read_and_decode(example):
image_raw = tf.io.decode_raw(example['image_raw'], tf.int64)
image_raw.set_shape([65536])
image = tf.reshape(image_raw, [256, 256, 1])
image = tf.cast(image, tf.float32) * (1. / 1024)
label_raw = tf.io.decode_raw(example['label_raw'], tf.uint8)
label_raw.set_shape([65536])
label = tf.reshape(label_raw, [256, 256, 1])
return image, label
# Load and parse datasets
raw_training_dataset = tf.data.TFRecordDataset(train_file_path)
raw_val_dataset = tf.data.TFRecordDataset(val_file_path)
parsed_training_dataset = raw_training_dataset.map(_parse_image_function)
parsed_val_dataset = raw_val_dataset.map(_parse_image_function)
# Prepare datasets
tf_autotune = tf.data.experimental.AUTOTUNE
train = parsed_training_dataset.map(read_and_decode, num_parallel_calls=tf_autotune)
val = parsed_val_dataset.map(read_and_decode)
BUFFER_SIZE = 10
BATCH_SIZE = 1
train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset = train_dataset.prefetch(buffer_size=tf_autotune)
test_dataset = val.batch(BATCH_SIZE)
st.write(train_dataset)
# function to take a prediction from the model and output an image for display
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
def display(display_list):
fig = plt.figure(figsize=(10, 10))
title = ['Input Image', 'Label', 'Prediction'] # Updated title list
for i in range(len(display_list)):
ax = fig.add_subplot(1, len(display_list), i + 1)
display_resized = tf.reshape(display_list[i], [256, 256])
ax.set_title(title[i]) # No longer out of range
ax.imshow(display_resized, cmap='gray')
ax.axis('off')
st.pyplot(fig)
# helper function to show the image, the label and the prediction
def show_predictions(dataset=None, num=1):
if dataset:
for image, label in dataset.take(num):
pred_mask = model.predict(image)
display([image[0], label[0], create_mask(pred_mask)])
else:
prediction = create_mask(model.predict(sample_image[tf.newaxis, ...]))
display([sample_image, sample_label, prediction])
# define a callback that shows image predictions on the test set
class DisplayCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
show_predictions()
st.write('\nSample Prediction after epoch {}\n'.format(epoch+1))
# Streamlit app interface
st.title("Cardiac Images Dataset")
# Display sample images
for image, label in train.take(2):
sample_image, sample_label = image, label
display([sample_image, sample_label])
tf.keras.backend.clear_session()
# set up the model architecture
model = tf.keras.models.Sequential([
tf.keras.layers.Input(shape=(256, 256, 1)), # Define input shape
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(256*256*2, activation='softmax'),
tf.keras.layers.Reshape((256, 256, 2))
])
# specify how to train the model with algorithm, the loss function and metrics
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# Capture the model summary
model_summary = StringIO()
model.summary(print_fn=lambda x: model_summary.write(x + '\n'))
# Display the model summary in Streamlit
st.markdown(model_summary.getvalue())
try:
# Save the model plot
plot_filename = "model_plot.png"
tf.keras.utils.plot_model(model, to_file=plot_filename, show_shapes=True)
except Exception as e:
st.error(f"An error occurred: {e}")
# Streamlit App
st.title("Model Architecture")
# Display the model plot
st.image(plot_filename, caption="Neural Network Architecture", use_container_width=True)
# show a predection, as an example
show_predictions(test_dataset)
# setup a tensorboard callback
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
if st.button("Train Model"):
# setup and run the model
EPOCHS = 20
STEPS_PER_EPOCH = len(list(parsed_training_dataset))
VALIDATION_STEPS = 26
model_history = model.fit(train_dataset, epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS,
validation_data=test_dataset,
callbacks=[DisplayCallback(), tensorboard_callback])
# output model statistics
loss = model_history.history['loss']
val_loss = model_history.history['val_loss']
accuracy = model_history.history['accuracy']
val_accuracy = model_history.history['val_accuracy']
epochs = range(EPOCHS)
st.title('Training and Validation Loss') # Optional title for the Streamlit app
fig, ax = plt.subplots() # Create a figure and an axes object
ax.plot(epochs, loss, 'r', label='Training loss')
ax.plot(epochs, val_loss, 'bo', label='Validation loss')
ax.set_title('Training and Validation Loss') #Set title for the axes
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss Value')
ax.set_ylim([0, 1])
ax.legend()
st.pyplot(fig) # Display the plot in Streamlit
if st.button("Evaluate Model"):
# Evaluate the model
evaluation_results = model.evaluate(test_dataset, verbose=0) # Set verbose=0 to suppress console output
# Assuming model.metrics_names provides labels for evaluation_results
results_dict = dict(zip(model.metrics_names, evaluation_results))
st.subheader("Model Evaluation Results")
# Display each metric and its corresponding value
for metric, value in results_dict.items():
st.write(f"**{metric.capitalize()}:** {value:.4f}")
if st.button("Show TensorBoard"):
# Create a log directory for TensorBoard
log_dir = "logs"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# Run TensorBoard
url = run_tensorboard(log_dir)
# Display TensorBoard in an iframe
st.markdown(f"<iframe src='{url}' width='100%' height='800'></iframe>", unsafe_allow_html=True)
if st.button("CNN"):
tf.keras.backend.clear_session()
inputs = tf.keras.Input(shape=(256, 256, 1), name="InputLayer")
x = tf.keras.layers.Conv2D(filters=100, kernel_size=5, strides=2, padding="same",
activation="relu", name="Conv1")(inputs)
x = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding="same")(x)
x = tf.keras.layers.Conv2D(filters=200, kernel_size=5, strides=2, padding="same",
activation="relu", name="Conv2")(x)
x = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, padding="same")(x)
x = tf.keras.layers.Conv2D(filters=300, kernel_size=3, strides=1, padding="same",
activation="relu", name="Conv3")(x)
x = tf.keras.layers.Conv2D(filters=300, kernel_size=3, strides=1, padding="same",
activation="relu", name="Conv4")(x)
x = tf.keras.layers.Conv2D(filters=2, kernel_size=1, strides=1, padding="same",
activation="relu", name="Conv5")(x)
outputs = tf.keras.layers.Conv2DTranspose(filters=2, kernel_size=31, strides=16,
padding="same", activation="softmax",
name="UpSampling")(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs, name="CNN_Segmentation")
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy']
)
# Capture the model summary
model_summary = StringIO()
model.summary(print_fn=lambda x: model_summary.write(x + '\n'))
# plot the model including the sizes of the model
tf.keras.utils.plot_model(model, show_shapes=True)
# show a predection, as an example
show_predictions(test_dataset)
# Initialize new directories for new task
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
# setup and run the model
EPOCHS = 20
STEPS_PER_EPOCH = len(list(parsed_training_dataset))
VALIDATION_STEPS = 26
model_history = model.fit(train_dataset, epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
validation_steps=VALIDATION_STEPS,
validation_data=test_dataset,
callbacks=[DisplayCallback(), tensorboard_callback])
# output model statistics
loss = model_history.history['loss']
val_loss = model_history.history['val_loss']
accuracy = model_history.history['accuracy']
val_accuracy = model_history.history['val_accuracy']
epochs = range(EPOCHS)
st.title('Training and Validation Loss') # Optional title for the Streamlit app
fig, ax = plt.subplots() # Create a figure and an axes object
ax.plot(epochs, loss, 'r', label='Training loss')
ax.plot(epochs, val_loss, 'bo', label='Validation loss')
ax.set_title('Training and Validation Loss') #Set title for the axes
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss Value')
ax.set_ylim([0, 1])
ax.legend()
st.pyplot(fig) # Display the plot in Streamlit
|