HumanSD / mmpose /datasets /transforms /bottomup_transforms.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple
import cv2
import numpy as np
import xtcocotools.mask as cocomask
from mmcv.image import imflip_, imresize
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness
from scipy.stats import truncnorm
from mmpose.registry import TRANSFORMS
from mmpose.structures.bbox import get_udp_warp_matrix, get_warp_matrix
@TRANSFORMS.register_module()
class BottomupGetHeatmapMask(BaseTransform):
"""Generate the mask of valid regions from the segmentation annotation.
Required Keys:
- img_shape
- invalid_segs (optional)
- warp_mat (optional)
- flip (optional)
- flip_direction (optional)
- heatmaps (optional)
Added Keys:
- heatmap_mask
"""
def _segs_to_mask(self, segs: list, img_shape: Tuple[int,
int]) -> np.ndarray:
"""Calculate mask from object segmentations.
Args:
segs (List): The object segmentation annotations in COCO format
img_shape (Tuple): The image shape in (h, w)
Returns:
np.ndarray: The binary object mask in size (h, w), where the
object pixels are 1 and background pixels are 0
"""
# RLE is a simple yet efficient format for storing binary masks.
# details can be found at `COCO tools <https://github.com/
# cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/
# mask.py>`__
rles = []
for seg in segs:
rle = cocomask.frPyObjects(seg, img_shape[0], img_shape[1])
if isinstance(rle, list):
# For non-crowded objects (e.g. human with no visible
# keypoints), the results is a list of rles
rles.extend(rle)
else:
# For crowded objects, the result is a single rle
rles.append(rle)
if rles:
mask = cocomask.decode(cocomask.merge(rles))
else:
mask = np.zeros(img_shape, dtype=np.uint8)
return mask
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupGetHeatmapMask` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
invalid_segs = results.get('invalid_segs', [])
img_shape = results['img_shape'] # (img_h, img_w)
input_size = results['input_size']
# Calculate the mask of the valid region by negating the segmentation
# mask of invalid objects
mask = 1 - self._segs_to_mask(invalid_segs, img_shape)
# Apply an affine transform to the mask if the image has been
# transformed
if 'warp_mat' in results:
warp_mat = results['warp_mat']
mask = mask.astype(np.float32)
mask = cv2.warpAffine(
mask, warp_mat, input_size, flags=cv2.INTER_LINEAR)
# Flip the mask if the image has been flipped
if results.get('flip', False):
flip_dir = results['flip_direction']
if flip_dir is not None:
mask = imflip_(mask, flip_dir)
# Resize the mask to the same size of heatmaps
if 'heatmaps' in results:
heatmaps = results['heatmaps']
if isinstance(heatmaps, list):
# Multi-level heatmaps
heatmap_mask = []
for hm in results['heatmaps']:
h, w = hm.shape[1:3]
_mask = imresize(
mask, size=(w, h), interpolation='bilinear')
heatmap_mask.append(_mask)
else:
h, w = heatmaps.shape[1:3]
heatmap_mask = imresize(
mask, size=(w, h), interpolation='bilinear')
else:
heatmap_mask = mask
# Binarize the mask(s)
if isinstance(heatmap_mask, list):
results['heatmap_mask'] = [hm > 0.5 for hm in heatmap_mask]
else:
results['heatmap_mask'] = heatmap_mask > 0.5
return results
@TRANSFORMS.register_module()
class BottomupRandomAffine(BaseTransform):
r"""Randomly shift, resize and rotate the image.
Required Keys:
- img
- img_shape
- keypoints (optional)
Modified Keys:
- img
- keypoints (optional)
Added Keys:
- input_size
- warp_mat
Args:
input_size (Tuple[int, int]): The input image size of the model in
[w, h]
shift_factor (float): Randomly shift the image in range
:math:`[-dx, dx]` and :math:`[-dy, dy]` in X and Y directions,
where :math:`dx(y) = img_w(h) \cdot shift_factor` in pixels.
Defaults to 0.2
shift_prob (float): Probability of applying random shift. Defaults to
1.0
scale_factor (Tuple[float, float]): Randomly resize the image in range
:math:`[scale_factor[0], scale_factor[1]]`. Defaults to
(0.75, 1.5)
scale_prob (float): Probability of applying random resizing. Defaults
to 1.0
scale_type (str): wrt ``long`` or ``short`` length of the image.
Defaults to ``short``
rotate_factor (float): Randomly rotate the bbox in
:math:`[-rotate_factor, rotate_factor]` in degrees. Defaults
to 40.0
use_udp (bool): Whether use unbiased data processing. See
`UDP (CVPR 2020)`_ for details. Defaults to ``False``
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
def __init__(self,
input_size: Tuple[int, int],
shift_factor: float = 0.2,
shift_prob: float = 1.,
scale_factor: Tuple[float, float] = (0.75, 1.5),
scale_prob: float = 1.,
scale_type: str = 'short',
rotate_factor: float = 30.,
rotate_prob: float = 1,
use_udp: bool = False) -> None:
super().__init__()
self.input_size = input_size
self.shift_factor = shift_factor
self.shift_prob = shift_prob
self.scale_factor = scale_factor
self.scale_prob = scale_prob
self.scale_type = scale_type
self.rotate_factor = rotate_factor
self.rotate_prob = rotate_prob
self.use_udp = use_udp
@staticmethod
def _truncnorm(low: float = -1.,
high: float = 1.,
size: tuple = ()) -> np.ndarray:
"""Sample from a truncated normal distribution."""
return truncnorm.rvs(low, high, size=size).astype(np.float32)
def _fix_aspect_ratio(self, scale: np.ndarray, aspect_ratio: float):
"""Extend the scale to match the given aspect ratio.
Args:
scale (np.ndarray): The image scale (w, h) in shape (2, )
aspect_ratio (float): The ratio of ``w/h``
Returns:
np.ndarray: The reshaped image scale in (2, )
"""
w, h = scale
if w > h * aspect_ratio:
if self.scale_type == 'long':
_w, _h = w, w / aspect_ratio
elif self.scale_type == 'short':
_w, _h = h * aspect_ratio, h
else:
raise ValueError(f'Unknown scale type: {self.scale_type}')
else:
if self.scale_type == 'short':
_w, _h = w, w / aspect_ratio
elif self.scale_type == 'long':
_w, _h = h * aspect_ratio, h
else:
raise ValueError(f'Unknown scale type: {self.scale_type}')
return np.array([_w, _h], dtype=scale.dtype)
@cache_randomness
def _get_transform_params(self) -> Tuple:
"""Get random transform parameters.
Returns:
tuple:
- offset (np.ndarray): Image offset rate in shape (2, )
- scale (np.ndarray): Image scaling rate factor in shape (1, )
- rotate (np.ndarray): Image rotation degree in shape (1, )
"""
# get offset
if np.random.rand() < self.shift_prob:
offset = self._truncnorm(size=(2, )) * self.shift_factor
else:
offset = np.zeros((2, ), dtype=np.float32)
# get scale
if np.random.rand() < self.scale_prob:
scale_min, scale_max = self.scale_factor
scale = scale_min + (scale_max - scale_min) * (
self._truncnorm(size=(1, )) + 1) / 2
else:
scale = np.ones(1, dtype=np.float32)
# get rotation
if np.random.rand() < self.rotate_prob:
rotate = self._truncnorm() * self.rotate_factor
else:
rotate = 0
return offset, scale, rotate
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupRandomAffine` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
img_h, img_w = results['img_shape']
w, h = self.input_size
offset_rate, scale_rate, rotate = self._get_transform_params()
offset = offset_rate * [img_w, img_h]
scale = scale_rate * [img_w, img_h]
# adjust the scale to match the target aspect ratio
scale = self._fix_aspect_ratio(scale, aspect_ratio=w / h)
if self.use_udp:
center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2],
dtype=np.float32)
warp_mat = get_udp_warp_matrix(
center=center + offset,
scale=scale,
rot=rotate,
output_size=(w, h))
else:
center = np.array([img_w / 2, img_h / 2], dtype=np.float32)
warp_mat = get_warp_matrix(
center=center + offset,
scale=scale,
rot=rotate,
output_size=(w, h))
# warp image and keypoints
results['img'] = cv2.warpAffine(
results['img'], warp_mat, (int(w), int(h)), flags=cv2.INTER_LINEAR)
if 'keypoints' in results:
# Only transform (x, y) coordinates
results['keypoints'][..., :2] = cv2.transform(
results['keypoints'][..., :2], warp_mat)
if 'bbox' in results:
bbox = np.tile(results['bbox'], 2).reshape(-1, 4, 2)
# corner order: left_top, left_bottom, right_top, right_bottom
bbox[:, 1:3, 0] = bbox[:, 0:2, 0]
results['bbox'] = cv2.transform(bbox, warp_mat).reshape(-1, 8)
results['input_size'] = self.input_size
results['warp_mat'] = warp_mat
return results
@TRANSFORMS.register_module()
class BottomupResize(BaseTransform):
"""Resize the image to the input size of the model. Optionally, the image
can be resized to multiple sizes to build a image pyramid for multi-scale
inference.
Required Keys:
- img
- ori_shape
Modified Keys:
- img
- img_shape
Added Keys:
- input_size
- warp_mat
- aug_scale
Args:
input_size (Tuple[int, int]): The input size of the model in [w, h].
Note that the actually size of the resized image will be affected
by ``resize_mode`` and ``size_factor``, thus may not exactly equals
to the ``input_size``
aug_scales (List[float], optional): The extra input scales for
multi-scale testing. If given, the input image will be resized
to different scales to build a image pyramid. And heatmaps from
all scales will be aggregated to make final prediction. Defaults
to ``None``
size_factor (int): The actual input size will be ceiled to
a multiple of the `size_factor` value at both sides.
Defaults to 16
resize_mode (str): The method to resize the image to the input size.
Options are:
- ``'fit'``: The image will be resized according to the
relatively longer side with the aspect ratio kept. The
resized image will entirely fits into the range of the
input size
- ``'expand'``: The image will be resized according to the
relatively shorter side with the aspect ratio kept. The
resized image will exceed the given input size at the
longer side
use_udp (bool): Whether use unbiased data processing. See
`UDP (CVPR 2020)`_ for details. Defaults to ``False``
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
def __init__(self,
input_size: Tuple[int, int],
aug_scales: Optional[List[float]] = None,
size_factor: int = 32,
resize_mode: str = 'fit',
use_udp: bool = False):
super().__init__()
self.input_size = input_size
self.aug_scales = aug_scales
self.resize_mode = resize_mode
self.size_factor = size_factor
self.use_udp = use_udp
@staticmethod
def _ceil_to_multiple(size: Tuple[int, int], base: int):
"""Ceil the given size (tuple of [w, h]) to a multiple of the base."""
return tuple(int(np.ceil(s / base) * base) for s in size)
def _get_input_size(self, img_size: Tuple[int, int],
input_size: Tuple[int, int]) -> Tuple:
"""Calculate the actual input size (which the original image will be
resized to) and the padded input size (which the resized image will be
padded to, or which is the size of the model input).
Args:
img_size (Tuple[int, int]): The original image size in [w, h]
input_size (Tuple[int, int]): The expected input size in [w, h]
Returns:
tuple:
- actual_input_size (Tuple[int, int]): The target size to resize
the image
- padded_input_size (Tuple[int, int]): The target size to generate
the model input which will contain the resized image
"""
img_w, img_h = img_size
ratio = img_w / img_h
if self.resize_mode == 'fit':
padded_input_size = self._ceil_to_multiple(input_size,
self.size_factor)
if padded_input_size != input_size:
raise ValueError(
'When ``resize_mode==\'fit\', the input size (height and'
' width) should be mulitples of the size_factor('
f'{self.size_factor}) at all scales. Got invalid input '
f'size {input_size}.')
pad_w, pad_h = padded_input_size
rsz_w = min(pad_w, pad_h * ratio)
rsz_h = min(pad_h, pad_w / ratio)
actual_input_size = (rsz_w, rsz_h)
elif self.resize_mode == 'expand':
_padded_input_size = self._ceil_to_multiple(
input_size, self.size_factor)
pad_w, pad_h = _padded_input_size
rsz_w = max(pad_w, pad_h * ratio)
rsz_h = max(pad_h, pad_w / ratio)
actual_input_size = (rsz_w, rsz_h)
padded_input_size = self._ceil_to_multiple(actual_input_size,
self.size_factor)
else:
raise ValueError(f'Invalid resize mode {self.resize_mode}')
return actual_input_size, padded_input_size
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupResize` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
img = results['img']
img_h, img_w = results['ori_shape']
w, h = self.input_size
input_sizes = [(w, h)]
if self.aug_scales:
input_sizes += [(int(w * s), int(h * s)) for s in self.aug_scales]
imgs = []
for i, (_w, _h) in enumerate(input_sizes):
actual_input_size, padded_input_size = self._get_input_size(
img_size=(img_w, img_h), input_size=(_w, _h))
if self.use_udp:
center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2],
dtype=np.float32)
scale = np.array([img_w, img_h], dtype=np.float32)
warp_mat = get_udp_warp_matrix(
center=center,
scale=scale,
rot=0,
output_size=actual_input_size)
else:
center = np.array([img_w / 2, img_h / 2], dtype=np.float32)
scale = np.array([
img_w * padded_input_size[0] / actual_input_size[0],
img_h * padded_input_size[1] / actual_input_size[1]
],
dtype=np.float32)
warp_mat = get_warp_matrix(
center=center,
scale=scale,
rot=0,
output_size=padded_input_size)
_img = cv2.warpAffine(
img, warp_mat, padded_input_size, flags=cv2.INTER_LINEAR)
imgs.append(_img)
# Store the transform information w.r.t. the main input size
if i == 0:
results['img_shape'] = padded_input_size[::-1]
results['input_center'] = center
results['input_scale'] = scale
results['input_size'] = padded_input_size
if self.aug_scales:
results['img'] = imgs
results['aug_scales'] = self.aug_scales
else:
results['img'] = imgs[0]
results['aug_scale'] = None
return results