Spaces:
Runtime error
Runtime error
File size: 18,636 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple
import cv2
import numpy as np
import xtcocotools.mask as cocomask
from mmcv.image import imflip_, imresize
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness
from scipy.stats import truncnorm
from mmpose.registry import TRANSFORMS
from mmpose.structures.bbox import get_udp_warp_matrix, get_warp_matrix
@TRANSFORMS.register_module()
class BottomupGetHeatmapMask(BaseTransform):
"""Generate the mask of valid regions from the segmentation annotation.
Required Keys:
- img_shape
- invalid_segs (optional)
- warp_mat (optional)
- flip (optional)
- flip_direction (optional)
- heatmaps (optional)
Added Keys:
- heatmap_mask
"""
def _segs_to_mask(self, segs: list, img_shape: Tuple[int,
int]) -> np.ndarray:
"""Calculate mask from object segmentations.
Args:
segs (List): The object segmentation annotations in COCO format
img_shape (Tuple): The image shape in (h, w)
Returns:
np.ndarray: The binary object mask in size (h, w), where the
object pixels are 1 and background pixels are 0
"""
# RLE is a simple yet efficient format for storing binary masks.
# details can be found at `COCO tools <https://github.com/
# cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/
# mask.py>`__
rles = []
for seg in segs:
rle = cocomask.frPyObjects(seg, img_shape[0], img_shape[1])
if isinstance(rle, list):
# For non-crowded objects (e.g. human with no visible
# keypoints), the results is a list of rles
rles.extend(rle)
else:
# For crowded objects, the result is a single rle
rles.append(rle)
if rles:
mask = cocomask.decode(cocomask.merge(rles))
else:
mask = np.zeros(img_shape, dtype=np.uint8)
return mask
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupGetHeatmapMask` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
invalid_segs = results.get('invalid_segs', [])
img_shape = results['img_shape'] # (img_h, img_w)
input_size = results['input_size']
# Calculate the mask of the valid region by negating the segmentation
# mask of invalid objects
mask = 1 - self._segs_to_mask(invalid_segs, img_shape)
# Apply an affine transform to the mask if the image has been
# transformed
if 'warp_mat' in results:
warp_mat = results['warp_mat']
mask = mask.astype(np.float32)
mask = cv2.warpAffine(
mask, warp_mat, input_size, flags=cv2.INTER_LINEAR)
# Flip the mask if the image has been flipped
if results.get('flip', False):
flip_dir = results['flip_direction']
if flip_dir is not None:
mask = imflip_(mask, flip_dir)
# Resize the mask to the same size of heatmaps
if 'heatmaps' in results:
heatmaps = results['heatmaps']
if isinstance(heatmaps, list):
# Multi-level heatmaps
heatmap_mask = []
for hm in results['heatmaps']:
h, w = hm.shape[1:3]
_mask = imresize(
mask, size=(w, h), interpolation='bilinear')
heatmap_mask.append(_mask)
else:
h, w = heatmaps.shape[1:3]
heatmap_mask = imresize(
mask, size=(w, h), interpolation='bilinear')
else:
heatmap_mask = mask
# Binarize the mask(s)
if isinstance(heatmap_mask, list):
results['heatmap_mask'] = [hm > 0.5 for hm in heatmap_mask]
else:
results['heatmap_mask'] = heatmap_mask > 0.5
return results
@TRANSFORMS.register_module()
class BottomupRandomAffine(BaseTransform):
r"""Randomly shift, resize and rotate the image.
Required Keys:
- img
- img_shape
- keypoints (optional)
Modified Keys:
- img
- keypoints (optional)
Added Keys:
- input_size
- warp_mat
Args:
input_size (Tuple[int, int]): The input image size of the model in
[w, h]
shift_factor (float): Randomly shift the image in range
:math:`[-dx, dx]` and :math:`[-dy, dy]` in X and Y directions,
where :math:`dx(y) = img_w(h) \cdot shift_factor` in pixels.
Defaults to 0.2
shift_prob (float): Probability of applying random shift. Defaults to
1.0
scale_factor (Tuple[float, float]): Randomly resize the image in range
:math:`[scale_factor[0], scale_factor[1]]`. Defaults to
(0.75, 1.5)
scale_prob (float): Probability of applying random resizing. Defaults
to 1.0
scale_type (str): wrt ``long`` or ``short`` length of the image.
Defaults to ``short``
rotate_factor (float): Randomly rotate the bbox in
:math:`[-rotate_factor, rotate_factor]` in degrees. Defaults
to 40.0
use_udp (bool): Whether use unbiased data processing. See
`UDP (CVPR 2020)`_ for details. Defaults to ``False``
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
def __init__(self,
input_size: Tuple[int, int],
shift_factor: float = 0.2,
shift_prob: float = 1.,
scale_factor: Tuple[float, float] = (0.75, 1.5),
scale_prob: float = 1.,
scale_type: str = 'short',
rotate_factor: float = 30.,
rotate_prob: float = 1,
use_udp: bool = False) -> None:
super().__init__()
self.input_size = input_size
self.shift_factor = shift_factor
self.shift_prob = shift_prob
self.scale_factor = scale_factor
self.scale_prob = scale_prob
self.scale_type = scale_type
self.rotate_factor = rotate_factor
self.rotate_prob = rotate_prob
self.use_udp = use_udp
@staticmethod
def _truncnorm(low: float = -1.,
high: float = 1.,
size: tuple = ()) -> np.ndarray:
"""Sample from a truncated normal distribution."""
return truncnorm.rvs(low, high, size=size).astype(np.float32)
def _fix_aspect_ratio(self, scale: np.ndarray, aspect_ratio: float):
"""Extend the scale to match the given aspect ratio.
Args:
scale (np.ndarray): The image scale (w, h) in shape (2, )
aspect_ratio (float): The ratio of ``w/h``
Returns:
np.ndarray: The reshaped image scale in (2, )
"""
w, h = scale
if w > h * aspect_ratio:
if self.scale_type == 'long':
_w, _h = w, w / aspect_ratio
elif self.scale_type == 'short':
_w, _h = h * aspect_ratio, h
else:
raise ValueError(f'Unknown scale type: {self.scale_type}')
else:
if self.scale_type == 'short':
_w, _h = w, w / aspect_ratio
elif self.scale_type == 'long':
_w, _h = h * aspect_ratio, h
else:
raise ValueError(f'Unknown scale type: {self.scale_type}')
return np.array([_w, _h], dtype=scale.dtype)
@cache_randomness
def _get_transform_params(self) -> Tuple:
"""Get random transform parameters.
Returns:
tuple:
- offset (np.ndarray): Image offset rate in shape (2, )
- scale (np.ndarray): Image scaling rate factor in shape (1, )
- rotate (np.ndarray): Image rotation degree in shape (1, )
"""
# get offset
if np.random.rand() < self.shift_prob:
offset = self._truncnorm(size=(2, )) * self.shift_factor
else:
offset = np.zeros((2, ), dtype=np.float32)
# get scale
if np.random.rand() < self.scale_prob:
scale_min, scale_max = self.scale_factor
scale = scale_min + (scale_max - scale_min) * (
self._truncnorm(size=(1, )) + 1) / 2
else:
scale = np.ones(1, dtype=np.float32)
# get rotation
if np.random.rand() < self.rotate_prob:
rotate = self._truncnorm() * self.rotate_factor
else:
rotate = 0
return offset, scale, rotate
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupRandomAffine` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
img_h, img_w = results['img_shape']
w, h = self.input_size
offset_rate, scale_rate, rotate = self._get_transform_params()
offset = offset_rate * [img_w, img_h]
scale = scale_rate * [img_w, img_h]
# adjust the scale to match the target aspect ratio
scale = self._fix_aspect_ratio(scale, aspect_ratio=w / h)
if self.use_udp:
center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2],
dtype=np.float32)
warp_mat = get_udp_warp_matrix(
center=center + offset,
scale=scale,
rot=rotate,
output_size=(w, h))
else:
center = np.array([img_w / 2, img_h / 2], dtype=np.float32)
warp_mat = get_warp_matrix(
center=center + offset,
scale=scale,
rot=rotate,
output_size=(w, h))
# warp image and keypoints
results['img'] = cv2.warpAffine(
results['img'], warp_mat, (int(w), int(h)), flags=cv2.INTER_LINEAR)
if 'keypoints' in results:
# Only transform (x, y) coordinates
results['keypoints'][..., :2] = cv2.transform(
results['keypoints'][..., :2], warp_mat)
if 'bbox' in results:
bbox = np.tile(results['bbox'], 2).reshape(-1, 4, 2)
# corner order: left_top, left_bottom, right_top, right_bottom
bbox[:, 1:3, 0] = bbox[:, 0:2, 0]
results['bbox'] = cv2.transform(bbox, warp_mat).reshape(-1, 8)
results['input_size'] = self.input_size
results['warp_mat'] = warp_mat
return results
@TRANSFORMS.register_module()
class BottomupResize(BaseTransform):
"""Resize the image to the input size of the model. Optionally, the image
can be resized to multiple sizes to build a image pyramid for multi-scale
inference.
Required Keys:
- img
- ori_shape
Modified Keys:
- img
- img_shape
Added Keys:
- input_size
- warp_mat
- aug_scale
Args:
input_size (Tuple[int, int]): The input size of the model in [w, h].
Note that the actually size of the resized image will be affected
by ``resize_mode`` and ``size_factor``, thus may not exactly equals
to the ``input_size``
aug_scales (List[float], optional): The extra input scales for
multi-scale testing. If given, the input image will be resized
to different scales to build a image pyramid. And heatmaps from
all scales will be aggregated to make final prediction. Defaults
to ``None``
size_factor (int): The actual input size will be ceiled to
a multiple of the `size_factor` value at both sides.
Defaults to 16
resize_mode (str): The method to resize the image to the input size.
Options are:
- ``'fit'``: The image will be resized according to the
relatively longer side with the aspect ratio kept. The
resized image will entirely fits into the range of the
input size
- ``'expand'``: The image will be resized according to the
relatively shorter side with the aspect ratio kept. The
resized image will exceed the given input size at the
longer side
use_udp (bool): Whether use unbiased data processing. See
`UDP (CVPR 2020)`_ for details. Defaults to ``False``
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
def __init__(self,
input_size: Tuple[int, int],
aug_scales: Optional[List[float]] = None,
size_factor: int = 32,
resize_mode: str = 'fit',
use_udp: bool = False):
super().__init__()
self.input_size = input_size
self.aug_scales = aug_scales
self.resize_mode = resize_mode
self.size_factor = size_factor
self.use_udp = use_udp
@staticmethod
def _ceil_to_multiple(size: Tuple[int, int], base: int):
"""Ceil the given size (tuple of [w, h]) to a multiple of the base."""
return tuple(int(np.ceil(s / base) * base) for s in size)
def _get_input_size(self, img_size: Tuple[int, int],
input_size: Tuple[int, int]) -> Tuple:
"""Calculate the actual input size (which the original image will be
resized to) and the padded input size (which the resized image will be
padded to, or which is the size of the model input).
Args:
img_size (Tuple[int, int]): The original image size in [w, h]
input_size (Tuple[int, int]): The expected input size in [w, h]
Returns:
tuple:
- actual_input_size (Tuple[int, int]): The target size to resize
the image
- padded_input_size (Tuple[int, int]): The target size to generate
the model input which will contain the resized image
"""
img_w, img_h = img_size
ratio = img_w / img_h
if self.resize_mode == 'fit':
padded_input_size = self._ceil_to_multiple(input_size,
self.size_factor)
if padded_input_size != input_size:
raise ValueError(
'When ``resize_mode==\'fit\', the input size (height and'
' width) should be mulitples of the size_factor('
f'{self.size_factor}) at all scales. Got invalid input '
f'size {input_size}.')
pad_w, pad_h = padded_input_size
rsz_w = min(pad_w, pad_h * ratio)
rsz_h = min(pad_h, pad_w / ratio)
actual_input_size = (rsz_w, rsz_h)
elif self.resize_mode == 'expand':
_padded_input_size = self._ceil_to_multiple(
input_size, self.size_factor)
pad_w, pad_h = _padded_input_size
rsz_w = max(pad_w, pad_h * ratio)
rsz_h = max(pad_h, pad_w / ratio)
actual_input_size = (rsz_w, rsz_h)
padded_input_size = self._ceil_to_multiple(actual_input_size,
self.size_factor)
else:
raise ValueError(f'Invalid resize mode {self.resize_mode}')
return actual_input_size, padded_input_size
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupResize` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
img = results['img']
img_h, img_w = results['ori_shape']
w, h = self.input_size
input_sizes = [(w, h)]
if self.aug_scales:
input_sizes += [(int(w * s), int(h * s)) for s in self.aug_scales]
imgs = []
for i, (_w, _h) in enumerate(input_sizes):
actual_input_size, padded_input_size = self._get_input_size(
img_size=(img_w, img_h), input_size=(_w, _h))
if self.use_udp:
center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2],
dtype=np.float32)
scale = np.array([img_w, img_h], dtype=np.float32)
warp_mat = get_udp_warp_matrix(
center=center,
scale=scale,
rot=0,
output_size=actual_input_size)
else:
center = np.array([img_w / 2, img_h / 2], dtype=np.float32)
scale = np.array([
img_w * padded_input_size[0] / actual_input_size[0],
img_h * padded_input_size[1] / actual_input_size[1]
],
dtype=np.float32)
warp_mat = get_warp_matrix(
center=center,
scale=scale,
rot=0,
output_size=padded_input_size)
_img = cv2.warpAffine(
img, warp_mat, padded_input_size, flags=cv2.INTER_LINEAR)
imgs.append(_img)
# Store the transform information w.r.t. the main input size
if i == 0:
results['img_shape'] = padded_input_size[::-1]
results['input_center'] = center
results['input_scale'] = scale
results['input_size'] = padded_input_size
if self.aug_scales:
results['img'] = imgs
results['aug_scales'] = self.aug_scales
else:
results['img'] = imgs[0]
results['aug_scale'] = None
return results
|