Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
from google.cloud import storage | |
from google.oauth2 import service_account | |
import json | |
import os | |
import requests | |
# upload image to google cloud storage | |
def upload_file_to_gcs_blob(file): | |
google_creds = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_JSON") | |
creds_json = json.loads(google_creds) | |
credentials = service_account.Credentials.from_service_account_info(creds_json) | |
# Google Cloud credentials | |
storage_client = storage.Client(credentials=credentials, project=creds_json['project_id']) | |
bucket_name=os.environ.get('bucket_name') | |
bucket = storage_client.bucket(bucket_name) | |
destination_blob_name = os.path.basename(file) | |
blob = bucket.blob(destination_blob_name) | |
blob.upload_from_filename(file) | |
public_url = blob.public_url | |
return public_url | |
from PIL import Image | |
def is_image(file_path): | |
try: | |
Image.open(file_path) | |
return True | |
except IOError: | |
return False | |
def supbase_insert(user_message,response_content,messages,response): | |
from supabase import create_client, Client | |
url = os.environ.get('supabase_url') | |
key = os.environ.get('supabase_key') | |
supabase = create_client(url, key) | |
data, count = supabase.table('messages').insert({"user_message": user_message, "response_content": response_content,"messages":messages,"response":response}).execute() | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
def get_completion(message,history): | |
if message["text"].strip() == "" and not message["files"]: | |
raise gr.Error("Please input a query and optionally image(s).") | |
if message["text"].strip() == "" and message["files"]: | |
raise gr.Error("Please input a text query along the image(s).") | |
text = message['text'] | |
user_message = [ | |
{"type": "text", "text": text}, | |
] | |
if message['files']: | |
file = message['files'][0] | |
public_url = upload_file_to_gcs_blob(file) | |
if is_image(file): # only support image file now | |
content_image = { | |
"type": "image_url", | |
"image_url": { | |
"url": public_url, | |
},} | |
user_message.append(content_image) | |
else: | |
raise gr.Error("Only support image files now.") | |
history_openai_format = [] | |
for human, assistant in history: | |
# check if there is image info in the history message | |
if isinstance(human, tuple): | |
continue | |
history_openai_format.append({"role": "user", "content": human }) | |
history_openai_format.append({"role": "assistant", "content":assistant}) | |
history_openai_format.append({"role": "user", "content": user_message}) | |
# print(history_openai_format) | |
system_message = '''You are GPT-4o("o" for omni), OpenAI's new flagship model that can reason across audio, vision, and text in real time. | |
GPT-4o matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster. | |
GPT-4o is especially better at vision and audio understanding compared to existing models. | |
GPT-4o's text and image capabilities are avaliable for users now. More capabilities like audio, and video will be rolled out iteratively in the future. | |
''' | |
# headers | |
openai_api_key = os.environ.get('openai_api_key') | |
headers = { | |
'Authorization': f'Bearer {openai_api_key}' | |
} | |
temperature = 0.7 | |
max_tokens = 2048 | |
init_message = [{"role": "system", "content": system_message}] | |
messages = init_message + history_openai_format[-5:] #system message + latest 2 round dialogues + user input | |
print(messages) | |
# request body | |
data = { | |
'model': 'gpt-4o', # we use gpt-4o here | |
'messages': messages, | |
'temperature':temperature, | |
'max_tokens':max_tokens, | |
# 'stream':True, | |
} | |
# get response | |
response = requests.post('https://burn.hair/v1/chat/completions', headers=headers, json=data) | |
response_data = response.json() | |
print(response_data) | |
print('-----------------------------------\n') | |
if 'error' in response_data: | |
response_content = response_data['error']['message'] | |
else: | |
response_content = response_data['choices'][0]['message']['content'] | |
usage = response_data['usage'] | |
supbase_insert(user_message,response_content,messages,response_data) | |
return response_content | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
get_completion, | |
multimodal=True, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# ], | |
) | |
demo.queue(max_size = 10) | |
if __name__ == "__main__": | |
demo.launch() |