Spaces:
Runtime error
Runtime error
File size: 6,075 Bytes
32cf150 9cdf772 32cf150 9cdf772 ca283bb 32cf150 9cdf772 0dd906f 32cf150 9cdf772 0dd906f 9cdf772 0dd906f 9cdf772 0dd906f 9cdf772 0dd906f 9cdf772 9bfbbf7 9cdf772 0dd906f 9cdf772 0dd906f 9cdf772 0dd906f 9cdf772 9bfbbf7 9cdf772 0dd906f 9bfbbf7 0dd906f 9cdf772 0dd906f ddfef73 9cdf772 9bfbbf7 db9c3fe 9cdf772 0dd906f 9cdf772 0dd906f 9cdf772 0dd906f 412f1d4 db9c3fe 0dd906f 9cdf772 0dd906f 690229e 2a23de3 9cdf772 0dd906f 9cdf772 db9c3fe 3fa3ce5 0dd906f 9bfbbf7 9cdf772 32cf150 9cdf772 b3ff4da 0dd906f 32cf150 0dd906f 32cf150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
from google.cloud import storage
from google.oauth2 import service_account
import json
import os
import requests
# upload image to google cloud storage
def upload_file_to_gcs_blob(file):
google_creds = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_JSON")
creds_json = json.loads(google_creds)
credentials = service_account.Credentials.from_service_account_info(creds_json)
# Google Cloud credentials
storage_client = storage.Client(credentials=credentials, project=creds_json['project_id'])
bucket_name=os.environ.get('bucket_name')
bucket = storage_client.bucket(bucket_name)
destination_blob_name = os.path.basename(file)
blob = bucket.blob(destination_blob_name)
blob.upload_from_filename(file)
public_url = blob.public_url
return public_url
from PIL import Image
def is_image(file_path):
try:
Image.open(file_path)
return True
except IOError:
return False
def supbase_insert(user_message,response_content,messages,response):
from supabase import create_client, Client
url = os.environ.get('supabase_url')
key = os.environ.get('supabase_key')
supabase = create_client(url, key)
data, count = supabase.table('messages').insert({"user_message": user_message, "response_content": response_content,"messages":messages,"response":response}).execute()
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
def get_completion(message,history):
if message["text"].strip() == "" and not message["files"]:
raise gr.Error("Please input a query and optionally image(s).")
if message["text"].strip() == "" and message["files"]:
raise gr.Error("Please input a text query along the image(s).")
text = message['text']
user_message = [
{"type": "text", "text": text},
]
if message['files']:
file = message['files'][0]
public_url = upload_file_to_gcs_blob(file)
if is_image(file): # only support image file now
content_image = {
"type": "image_url",
"image_url": {
"url": public_url,
},}
user_message.append(content_image)
else:
raise gr.Error("Only support image files now.")
history_openai_format = []
for human, assistant in history:
# check if there is image info in the history message
if isinstance(human, tuple):
continue
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": user_message})
# print(history_openai_format)
system_message = '''You are GPT-4o("o" for omni), OpenAI's new flagship model that can reason across audio, vision, and text in real time.
GPT-4o matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster.
GPT-4o is especially better at vision and audio understanding compared to existing models.
GPT-4o's text and image capabilities are avaliable for users now. More capabilities like audio, and video will be rolled out iteratively in the future.
'''
# headers
openai_api_key = os.environ.get('openai_api_key')
headers = {
'Authorization': f'Bearer {openai_api_key}'
}
temperature = 0.7
max_tokens = 2048
init_message = [{"role": "system", "content": system_message}]
messages = init_message + history_openai_format[-5:] #system message + latest 2 round dialogues + user input
print(messages)
# request body
data = {
'model': 'gpt-4o', # we use gpt-4o here
'messages': messages,
'temperature':temperature,
'max_tokens':max_tokens,
# 'stream':True,
}
# get response
response = requests.post('https://burn.hair/v1/chat/completions', headers=headers, json=data)
response_data = response.json()
print(response_data)
print('-----------------------------------\n')
if 'error' in response_data:
response_content = response_data['error']['message']
else:
response_content = response_data['choices'][0]['message']['content']
usage = response_data['usage']
supbase_insert(user_message,response_content,messages,response_data)
return response_content
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
get_completion,
multimodal=True,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# ],
)
demo.queue(max_size = 10)
if __name__ == "__main__":
demo.launch() |