File size: 5,111 Bytes
69765f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from huggingface_hub import hf_hub_url, list_datasets
from dotenv import load_dotenv
import os
from httpx import Client
from datetime import datetime
from datetime import timedelta
from tqdm.auto import tqdm
from tqdm.contrib.concurrent import thread_map
import pandas as pd
import gradio as gr

from huggingface_hub import hf_hub_url
import requests
from diskcache import Cache
from diskcache import Cache
from sys import platform
import gradio as gr

# check if running on macos i.e. local dev


load_dotenv()


HF_TOKEN = os.getenv("HF_TOKEN")
USER_AGENT = os.getenv("USER_AGENT")


headers = {"authorization": f"Bearer ${HF_TOKEN}", "user-agent": USER_AGENT}


client = Client(
    headers=headers,
    timeout=60,
)
LOCAL = False
if platform == "darwin":
    LOCAL = True
cache_dir = "cache" if LOCAL else "/data/diskcache"
cache = Cache(cache_dir)


def add_created_data(dataset):
    _id = dataset._id
    created = datetime.fromtimestamp(int(_id[:8], 16))
    dataset_dict = dataset.__dict__
    dataset_dict["created"] = created
    return dataset_dict


def get_three_months_ago():
    now = datetime.now()
    return now - timedelta(days=90)


def get_readme_len(dataset):
    try:
        url = hf_hub_url(dataset["id"], "README.md", repo_type="dataset")
        resp = client.get(url)
        if resp.status_code == 200:
            dataset["len"] = len(resp.text)
            return dataset
    except Exception as e:
        print(e)
        return None


def render_model_hub_link(hub_id):
    link = f"https://huggingface.co/datasets/{hub_id}"
    return (
        f'<a target="_blank" href="{link}" style="color: var(--link-text-color);'
        f' text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
    )


@cache.memoize(expire=60 * 60 * 12)
def get_datasets():
    return list(tqdm(iter(list_datasets(limit=None, full=True))))


@cache.memoize(expire=60 * 60 * 12)
def load_data():
    datasets = get_datasets()
    datasets = [add_created_data(dataset) for dataset in tqdm(datasets)]
    filtered = [ds for ds in datasets if ds.get("cardData")]
    filtered = [ds for ds in filtered if ds["created"] > get_three_months_ago()]

    ds_with_len = thread_map(get_readme_len, filtered)
    ds_with_len = [ds for ds in ds_with_len if ds is not None]
    return ds_with_len


remove_orgs = {"HuggingFaceM4", "HuggingFaceBR4"}


columns_to_drop = [
    "cardData",
    "gated",
    "sha",
    "paperswithcode_id",
    "tags",
    "description",
    "siblings",
    "disabled",
    "_id",
    "private",
    "author",
    "citation",
]


def prep_dataframe(remove_orgs_and_users=remove_orgs, columns_to_drop=columns_to_drop):
    ds_with_len = load_data()
    if remove_orgs_and_users:
        ds_with_len = [
            ds for ds in ds_with_len if ds["author"] not in remove_orgs_and_users
        ]
    df = pd.DataFrame(ds_with_len)
    df["id"] = df["id"].apply(render_model_hub_link)
    if columns_to_drop:
        df = df.drop(columns=columns_to_drop)
    return df


# def filter_df(
#     df,
#     created_after=None,
#     create_before=None,
#     min_likes=None,
#     max_likes=None,
#     min_len=None,
#     max_len=None,
#     min_downloads=None,
#     max_downloads=None,
# ):
#     if min_likes:
#         df = df[df["likes"] >= min_likes]
#     if max_likes:
#         df = df[df["likes"] <= max_likes]
#     if min_len:
#         df = df[df["len"] >= min_len]
#     if max_len:
#         df = df[df["len"] <= max_len]
#     if min_downloads:
#         df = df[df["downloads"] >= min_downloads]
#     if max_downloads:
#         df = df[df["downloads"] <= max_downloads]
#     return df


import datetime

import datetime


def filter_df_by_max_age(max_age_days=None):
    df = prep_dataframe()
    df = df.dropna(subset=["created"])

    now = datetime.datetime.now()

    if max_age_days is not None:
        max_date = now - datetime.timedelta(days=max_age_days)
        df = df[df["created"] >= max_date]

    return df


# def filter_df(
#     min_age_days=None,
#     max_age_days=None,
#     min_likes=None,
#     max_likes=None,
#     min_len=None,
#     max_len=None,
#     min_downloads=None,
#     max_downloads=None,
# ):
#     if min_age_days is not None or max_age_days is not None:
#         df = filter_df_by_date(min_age_days, max_age_days)
#     else:
#         df = prep_dataframe()
#     if min_likes:
#         df = df[df["likes"] >= min_likes]
#     if max_likes:
#         df = df[df["likes"] <= max_likes]
#     if min_len:
#         df = df[df["len"] >= min_len]
#     if max_len:
#         df = df[df["len"] <= max_len]
#     if min_downloads:
#         df = df[df["downloads"] >= min_downloads]
#     if max_downloads:
#         df = df[df["downloads"] <= max_downloads]
#     return df


with gr.Blocks() as demo:
    max_age_days = gr.Slider(
        label="Max Age (days)", value=7, minimum=0, maximum=90, step=1, interactive=True
    )
    output = gr.DataFrame(prep_dataframe(), datatype="markdown", min_width=160 * 2.5)
    max_age_days.input(filter_df_by_max_age, inputs=[max_age_days], outputs=[output])

demo.launch()