Spaces:
Running
Running
File size: 5,111 Bytes
69765f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from huggingface_hub import hf_hub_url, list_datasets
from dotenv import load_dotenv
import os
from httpx import Client
from datetime import datetime
from datetime import timedelta
from tqdm.auto import tqdm
from tqdm.contrib.concurrent import thread_map
import pandas as pd
import gradio as gr
from huggingface_hub import hf_hub_url
import requests
from diskcache import Cache
from diskcache import Cache
from sys import platform
import gradio as gr
# check if running on macos i.e. local dev
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
USER_AGENT = os.getenv("USER_AGENT")
headers = {"authorization": f"Bearer ${HF_TOKEN}", "user-agent": USER_AGENT}
client = Client(
headers=headers,
timeout=60,
)
LOCAL = False
if platform == "darwin":
LOCAL = True
cache_dir = "cache" if LOCAL else "/data/diskcache"
cache = Cache(cache_dir)
def add_created_data(dataset):
_id = dataset._id
created = datetime.fromtimestamp(int(_id[:8], 16))
dataset_dict = dataset.__dict__
dataset_dict["created"] = created
return dataset_dict
def get_three_months_ago():
now = datetime.now()
return now - timedelta(days=90)
def get_readme_len(dataset):
try:
url = hf_hub_url(dataset["id"], "README.md", repo_type="dataset")
resp = client.get(url)
if resp.status_code == 200:
dataset["len"] = len(resp.text)
return dataset
except Exception as e:
print(e)
return None
def render_model_hub_link(hub_id):
link = f"https://huggingface.co/datasets/{hub_id}"
return (
f'<a target="_blank" href="{link}" style="color: var(--link-text-color);'
f' text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
)
@cache.memoize(expire=60 * 60 * 12)
def get_datasets():
return list(tqdm(iter(list_datasets(limit=None, full=True))))
@cache.memoize(expire=60 * 60 * 12)
def load_data():
datasets = get_datasets()
datasets = [add_created_data(dataset) for dataset in tqdm(datasets)]
filtered = [ds for ds in datasets if ds.get("cardData")]
filtered = [ds for ds in filtered if ds["created"] > get_three_months_ago()]
ds_with_len = thread_map(get_readme_len, filtered)
ds_with_len = [ds for ds in ds_with_len if ds is not None]
return ds_with_len
remove_orgs = {"HuggingFaceM4", "HuggingFaceBR4"}
columns_to_drop = [
"cardData",
"gated",
"sha",
"paperswithcode_id",
"tags",
"description",
"siblings",
"disabled",
"_id",
"private",
"author",
"citation",
]
def prep_dataframe(remove_orgs_and_users=remove_orgs, columns_to_drop=columns_to_drop):
ds_with_len = load_data()
if remove_orgs_and_users:
ds_with_len = [
ds for ds in ds_with_len if ds["author"] not in remove_orgs_and_users
]
df = pd.DataFrame(ds_with_len)
df["id"] = df["id"].apply(render_model_hub_link)
if columns_to_drop:
df = df.drop(columns=columns_to_drop)
return df
# def filter_df(
# df,
# created_after=None,
# create_before=None,
# min_likes=None,
# max_likes=None,
# min_len=None,
# max_len=None,
# min_downloads=None,
# max_downloads=None,
# ):
# if min_likes:
# df = df[df["likes"] >= min_likes]
# if max_likes:
# df = df[df["likes"] <= max_likes]
# if min_len:
# df = df[df["len"] >= min_len]
# if max_len:
# df = df[df["len"] <= max_len]
# if min_downloads:
# df = df[df["downloads"] >= min_downloads]
# if max_downloads:
# df = df[df["downloads"] <= max_downloads]
# return df
import datetime
import datetime
def filter_df_by_max_age(max_age_days=None):
df = prep_dataframe()
df = df.dropna(subset=["created"])
now = datetime.datetime.now()
if max_age_days is not None:
max_date = now - datetime.timedelta(days=max_age_days)
df = df[df["created"] >= max_date]
return df
# def filter_df(
# min_age_days=None,
# max_age_days=None,
# min_likes=None,
# max_likes=None,
# min_len=None,
# max_len=None,
# min_downloads=None,
# max_downloads=None,
# ):
# if min_age_days is not None or max_age_days is not None:
# df = filter_df_by_date(min_age_days, max_age_days)
# else:
# df = prep_dataframe()
# if min_likes:
# df = df[df["likes"] >= min_likes]
# if max_likes:
# df = df[df["likes"] <= max_likes]
# if min_len:
# df = df[df["len"] >= min_len]
# if max_len:
# df = df[df["len"] <= max_len]
# if min_downloads:
# df = df[df["downloads"] >= min_downloads]
# if max_downloads:
# df = df[df["downloads"] <= max_downloads]
# return df
with gr.Blocks() as demo:
max_age_days = gr.Slider(
label="Max Age (days)", value=7, minimum=0, maximum=90, step=1, interactive=True
)
output = gr.DataFrame(prep_dataframe(), datatype="markdown", min_width=160 * 2.5)
max_age_days.input(filter_df_by_max_age, inputs=[max_age_days], outputs=[output])
demo.launch()
|