Spaces:
Running
Running
Commit
·
69765f6
1
Parent(s):
409aa4c
draft app
Browse files
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_url, list_datasets
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import os
|
4 |
+
from httpx import Client
|
5 |
+
from datetime import datetime
|
6 |
+
from datetime import timedelta
|
7 |
+
from tqdm.auto import tqdm
|
8 |
+
from tqdm.contrib.concurrent import thread_map
|
9 |
+
import pandas as pd
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
from huggingface_hub import hf_hub_url
|
13 |
+
import requests
|
14 |
+
from diskcache import Cache
|
15 |
+
from diskcache import Cache
|
16 |
+
from sys import platform
|
17 |
+
import gradio as gr
|
18 |
+
|
19 |
+
# check if running on macos i.e. local dev
|
20 |
+
|
21 |
+
|
22 |
+
load_dotenv()
|
23 |
+
|
24 |
+
|
25 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
26 |
+
USER_AGENT = os.getenv("USER_AGENT")
|
27 |
+
|
28 |
+
|
29 |
+
headers = {"authorization": f"Bearer ${HF_TOKEN}", "user-agent": USER_AGENT}
|
30 |
+
|
31 |
+
|
32 |
+
client = Client(
|
33 |
+
headers=headers,
|
34 |
+
timeout=60,
|
35 |
+
)
|
36 |
+
LOCAL = False
|
37 |
+
if platform == "darwin":
|
38 |
+
LOCAL = True
|
39 |
+
cache_dir = "cache" if LOCAL else "/data/diskcache"
|
40 |
+
cache = Cache(cache_dir)
|
41 |
+
|
42 |
+
|
43 |
+
def add_created_data(dataset):
|
44 |
+
_id = dataset._id
|
45 |
+
created = datetime.fromtimestamp(int(_id[:8], 16))
|
46 |
+
dataset_dict = dataset.__dict__
|
47 |
+
dataset_dict["created"] = created
|
48 |
+
return dataset_dict
|
49 |
+
|
50 |
+
|
51 |
+
def get_three_months_ago():
|
52 |
+
now = datetime.now()
|
53 |
+
return now - timedelta(days=90)
|
54 |
+
|
55 |
+
|
56 |
+
def get_readme_len(dataset):
|
57 |
+
try:
|
58 |
+
url = hf_hub_url(dataset["id"], "README.md", repo_type="dataset")
|
59 |
+
resp = client.get(url)
|
60 |
+
if resp.status_code == 200:
|
61 |
+
dataset["len"] = len(resp.text)
|
62 |
+
return dataset
|
63 |
+
except Exception as e:
|
64 |
+
print(e)
|
65 |
+
return None
|
66 |
+
|
67 |
+
|
68 |
+
def render_model_hub_link(hub_id):
|
69 |
+
link = f"https://huggingface.co/datasets/{hub_id}"
|
70 |
+
return (
|
71 |
+
f'<a target="_blank" href="{link}" style="color: var(--link-text-color);'
|
72 |
+
f' text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
@cache.memoize(expire=60 * 60 * 12)
|
77 |
+
def get_datasets():
|
78 |
+
return list(tqdm(iter(list_datasets(limit=None, full=True))))
|
79 |
+
|
80 |
+
|
81 |
+
@cache.memoize(expire=60 * 60 * 12)
|
82 |
+
def load_data():
|
83 |
+
datasets = get_datasets()
|
84 |
+
datasets = [add_created_data(dataset) for dataset in tqdm(datasets)]
|
85 |
+
filtered = [ds for ds in datasets if ds.get("cardData")]
|
86 |
+
filtered = [ds for ds in filtered if ds["created"] > get_three_months_ago()]
|
87 |
+
|
88 |
+
ds_with_len = thread_map(get_readme_len, filtered)
|
89 |
+
ds_with_len = [ds for ds in ds_with_len if ds is not None]
|
90 |
+
return ds_with_len
|
91 |
+
|
92 |
+
|
93 |
+
remove_orgs = {"HuggingFaceM4", "HuggingFaceBR4"}
|
94 |
+
|
95 |
+
|
96 |
+
columns_to_drop = [
|
97 |
+
"cardData",
|
98 |
+
"gated",
|
99 |
+
"sha",
|
100 |
+
"paperswithcode_id",
|
101 |
+
"tags",
|
102 |
+
"description",
|
103 |
+
"siblings",
|
104 |
+
"disabled",
|
105 |
+
"_id",
|
106 |
+
"private",
|
107 |
+
"author",
|
108 |
+
"citation",
|
109 |
+
]
|
110 |
+
|
111 |
+
|
112 |
+
def prep_dataframe(remove_orgs_and_users=remove_orgs, columns_to_drop=columns_to_drop):
|
113 |
+
ds_with_len = load_data()
|
114 |
+
if remove_orgs_and_users:
|
115 |
+
ds_with_len = [
|
116 |
+
ds for ds in ds_with_len if ds["author"] not in remove_orgs_and_users
|
117 |
+
]
|
118 |
+
df = pd.DataFrame(ds_with_len)
|
119 |
+
df["id"] = df["id"].apply(render_model_hub_link)
|
120 |
+
if columns_to_drop:
|
121 |
+
df = df.drop(columns=columns_to_drop)
|
122 |
+
return df
|
123 |
+
|
124 |
+
|
125 |
+
# def filter_df(
|
126 |
+
# df,
|
127 |
+
# created_after=None,
|
128 |
+
# create_before=None,
|
129 |
+
# min_likes=None,
|
130 |
+
# max_likes=None,
|
131 |
+
# min_len=None,
|
132 |
+
# max_len=None,
|
133 |
+
# min_downloads=None,
|
134 |
+
# max_downloads=None,
|
135 |
+
# ):
|
136 |
+
# if min_likes:
|
137 |
+
# df = df[df["likes"] >= min_likes]
|
138 |
+
# if max_likes:
|
139 |
+
# df = df[df["likes"] <= max_likes]
|
140 |
+
# if min_len:
|
141 |
+
# df = df[df["len"] >= min_len]
|
142 |
+
# if max_len:
|
143 |
+
# df = df[df["len"] <= max_len]
|
144 |
+
# if min_downloads:
|
145 |
+
# df = df[df["downloads"] >= min_downloads]
|
146 |
+
# if max_downloads:
|
147 |
+
# df = df[df["downloads"] <= max_downloads]
|
148 |
+
# return df
|
149 |
+
|
150 |
+
|
151 |
+
import datetime
|
152 |
+
|
153 |
+
import datetime
|
154 |
+
|
155 |
+
|
156 |
+
def filter_df_by_max_age(max_age_days=None):
|
157 |
+
df = prep_dataframe()
|
158 |
+
df = df.dropna(subset=["created"])
|
159 |
+
|
160 |
+
now = datetime.datetime.now()
|
161 |
+
|
162 |
+
if max_age_days is not None:
|
163 |
+
max_date = now - datetime.timedelta(days=max_age_days)
|
164 |
+
df = df[df["created"] >= max_date]
|
165 |
+
|
166 |
+
return df
|
167 |
+
|
168 |
+
|
169 |
+
# def filter_df(
|
170 |
+
# min_age_days=None,
|
171 |
+
# max_age_days=None,
|
172 |
+
# min_likes=None,
|
173 |
+
# max_likes=None,
|
174 |
+
# min_len=None,
|
175 |
+
# max_len=None,
|
176 |
+
# min_downloads=None,
|
177 |
+
# max_downloads=None,
|
178 |
+
# ):
|
179 |
+
# if min_age_days is not None or max_age_days is not None:
|
180 |
+
# df = filter_df_by_date(min_age_days, max_age_days)
|
181 |
+
# else:
|
182 |
+
# df = prep_dataframe()
|
183 |
+
# if min_likes:
|
184 |
+
# df = df[df["likes"] >= min_likes]
|
185 |
+
# if max_likes:
|
186 |
+
# df = df[df["likes"] <= max_likes]
|
187 |
+
# if min_len:
|
188 |
+
# df = df[df["len"] >= min_len]
|
189 |
+
# if max_len:
|
190 |
+
# df = df[df["len"] <= max_len]
|
191 |
+
# if min_downloads:
|
192 |
+
# df = df[df["downloads"] >= min_downloads]
|
193 |
+
# if max_downloads:
|
194 |
+
# df = df[df["downloads"] <= max_downloads]
|
195 |
+
# return df
|
196 |
+
|
197 |
+
|
198 |
+
with gr.Blocks() as demo:
|
199 |
+
max_age_days = gr.Slider(
|
200 |
+
label="Max Age (days)", value=7, minimum=0, maximum=90, step=1, interactive=True
|
201 |
+
)
|
202 |
+
output = gr.DataFrame(prep_dataframe(), datatype="markdown", min_width=160 * 2.5)
|
203 |
+
max_age_days.input(filter_df_by_max_age, inputs=[max_age_days], outputs=[output])
|
204 |
+
|
205 |
+
demo.launch()
|