lamhieu's picture
chore: update something
0176b09
import gradio as gr
import requests
import json
import logging
import pandas as pd
from typing import Tuple
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from gradio.routes import mount_gradio_app
# Filter out /v1 requests from the access log
class LogFilter(logging.Filter):
def filter(self, record):
if record.args and len(record.args) >= 3:
if "/v1" in str(record.args[2]):
return True
return False
logger = logging.getLogger("uvicorn.access")
logger.addFilter(LogFilter())
# Application metadata
__version__ = "1.0.0"
__author__ = "lamhieu"
__description__ = "Fast, lightweight, multilingual embeddings solution."
__metadata__ = {
"project": "Lightweight Embeddings Service",
"version": __version__,
"description": (
"Fast and efficient multilingual text and image embeddings service "
"powered by sentence-transformers, supporting 100+ languages and multi-modal inputs"
),
"docs": "https://lamhieu-lightweight-embeddings.hf.space/docs",
"github": "https://github.com/lh0x00/lightweight-embeddings",
"spaces": "https://huggingface.co/spaces/lamhieu/lightweight-embeddings",
}
# Set your embeddings API URL here (change host/port if needed)
EMBEDDINGS_API_URL = "http://localhost:7860/v1/embeddings"
# Markdown description for the main interface
APP_DESCRIPTION = f"""
# πŸš€ **Lightweight Embeddings API**
The **Lightweight Embeddings API** is a fast, free, and multilingual service designed for generating embeddings and reranking with support for both **text** and **image** inputs.
### ✨ Features & Privacy
- **Free & Multilingual**: Unlimited API service supporting 100+ languages with no usage restrictions
- **Advanced Processing**: High-quality text and image-text embeddings using state-of-the-art models with reranking capabilities
- **Privacy-First**: No storage of input data (text/images), only anonymous usage statistics for service improvement
- **Production-Ready**: Docker deployment, interactive Gradio playground, and comprehensive REST API documentation
- **Open & Efficient**: Fully open-source codebase using lightweight transformer models for rapid inference
### πŸ”— Resources
- [Documentation]({__metadata__["docs"]}) | [GitHub]({__metadata__["github"]}) | [Playground]({__metadata__["spaces"]})
"""
# Initialize FastAPI application
app = FastAPI(
title="Lightweight Embeddings API",
description=__description__,
version=__version__,
docs_url="/docs",
redoc_url="/redoc",
)
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Adjust if needed for specific domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Include your existing router (which provides /v1/embeddings, /v1/rank, etc.)
from .router import router
app.include_router(router, prefix="/v1")
def call_embeddings_api(user_input: str, selected_model: str) -> str:
"""
Send a request to the /v1/embeddings endpoint with the given model and input.
Return a pretty-printed JSON response or an error message.
"""
payload = {
"model": selected_model,
"input": user_input,
}
headers = {"Content-Type": "application/json"}
try:
response = requests.post(
EMBEDDINGS_API_URL, json=payload, headers=headers, timeout=20
)
except requests.exceptions.RequestException as e:
return f"❌ Network Error: {str(e)}"
if response.status_code != 200:
# Provide detailed error message
return f"❌ API Error {response.status_code}: {response.text}"
try:
data = response.json()
return json.dumps(data, indent=2, ensure_ascii=False)
except ValueError:
return "❌ Failed to parse JSON from API response."
def call_stats_api_df() -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
Calls the /v1/stats endpoint to retrieve analytics data.
Returns two DataFrames (access_df, tokens_df) constructed from the JSON response.
"""
url = "https://lamhieu-lightweight-embeddings.hf.space/v1/stats"
# Fetch stats
response = requests.get(url)
if response.status_code != 200:
raise ValueError(f"Failed to fetch stats: {response.text}")
data = response.json()
access_data = data["access"]
tokens_data = data["tokens"]
def build_stats_df(bucket: dict) -> pd.DataFrame:
"""
Helper to build a DataFrame with columns: Model, total, daily, weekly, monthly, yearly.
bucket is a dictionary like data["access"] or data["tokens"] in the stats response.
"""
all_models = set()
for time_range in ["total", "daily", "weekly", "monthly", "yearly"]:
all_models.update(bucket[time_range].keys())
# Prepare a data structure for DataFrame creation
result_dict = {
"Model": [],
"Total": [],
"Daily": [],
"Weekly": [],
"Monthly": [],
"Yearly": [],
}
for model in sorted(all_models):
result_dict["Model"].append(model)
result_dict["Total"].append(bucket["total"].get(model, 0))
result_dict["Daily"].append(bucket["daily"].get(model, 0))
result_dict["Weekly"].append(bucket["weekly"].get(model, 0))
result_dict["Monthly"].append(bucket["monthly"].get(model, 0))
result_dict["Yearly"].append(bucket["yearly"].get(model, 0))
df = pd.DataFrame(result_dict)
return df
access_df = build_stats_df(access_data)
tokens_df = build_stats_df(tokens_data)
return access_df, tokens_df
def create_main_interface():
"""
Creates a Gradio Blocks interface showing project info and an embeddings playground.
"""
# Available model options for the dropdown
model_options = [
"snowflake-arctic-embed-l-v2.0",
"bge-m3",
"gte-multilingual-base",
"paraphrase-multilingual-MiniLM-L12-v2",
"paraphrase-multilingual-mpnet-base-v2",
"multilingual-e5-small",
"multilingual-e5-base",
"multilingual-e5-large",
"siglip-base-patch16-256-multilingual",
]
with gr.Blocks(title="Lightweight Embeddings", theme="default") as demo:
gr.Markdown(APP_DESCRIPTION)
with gr.Tab("Embeddings Playground"):
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ”¬ Try the Embeddings Playground")
input_text = gr.Textbox(
label="Input Text or Image URL",
placeholder="Enter text or an image URL...",
lines=3,
)
model_dropdown = gr.Dropdown(
choices=model_options,
value=model_options[0],
label="Select Model",
)
generate_btn = gr.Button("Generate Embeddings")
output_json = gr.Textbox(
label="Embeddings API Response",
lines=10,
interactive=False,
)
generate_btn.click(
fn=call_embeddings_api,
inputs=[input_text, model_dropdown],
outputs=output_json,
)
with gr.Column():
gr.Markdown(
"""
### πŸ› οΈ cURL Examples
**Generate Embeddings (OpenAI compatible)**
```bash
curl -X 'POST' \\
'https://lamhieu-lightweight-embeddings.hf.space/v1/embeddings' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{
"model": "snowflake-arctic-embed-l-v2.0",
"input": "That is a happy person"
}'
```
**Perform Ranking**
```bash
curl -X 'POST' \\
'https://lamhieu-lightweight-embeddings.hf.space/v1/rank' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{
"model": "snowflake-arctic-embed-l-v2.0",
"queries": "That is a happy person",
"candidates": [
"That is a happy dog",
"That is a very happy person",
"Today is a sunny day"
]
}'
```
"""
)
# STATS SECTION: display stats in tables
with gr.Tab("Analytics Stats"):
stats_btn = gr.Button("Get Stats")
access_df = gr.DataFrame(
label="Access Stats",
headers=["Model", "Total", "Daily", "Weekly", "Monthly", "Yearly"],
interactive=False,
)
tokens_df = gr.DataFrame(
label="Token Stats",
headers=["Model", "Total", "Daily", "Weekly", "Monthly", "Yearly"],
interactive=False,
)
stats_btn.click(
fn=call_stats_api_df, inputs=[], outputs=[access_df, tokens_df]
)
return demo
# Create and mount the Gradio Blocks at the root path
main_interface = create_main_interface()
mount_gradio_app(app, main_interface, path="/")
# Startup and shutdown events
@app.on_event("startup")
async def startup_event():
"""
Initialize resources (like model loading) when the application starts.
"""
pass
@app.on_event("shutdown")
async def shutdown_event():
"""
Perform cleanup before the application shuts down.
"""
pass