Spaces:
Running
Running
File size: 10,065 Bytes
e8f9d10 65c747d b0cb394 65c747d e8f9d10 65c747d 4252268 65c747d e8f9d10 ea8754a e8f9d10 1dc5abe e8f9d10 ea8754a 65c747d 0f24792 ea8754a 9001620 ea8754a 9001620 ea8754a 9001620 ea8754a 9001620 ea8754a 073aa83 e8f9d10 86d6248 e8f9d10 b0cb394 86d6248 b0cb394 86d6248 b0cb394 86d6248 b0cb394 86d6248 e8f9d10 26238e1 de24ee4 e8f9d10 65c747d 977f802 e8f9d10 073aa83 0176b09 1e86e8b 0176b09 e8f9d10 b0cb394 0176b09 86d6248 b0cb394 86d6248 e8f9d10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import gradio as gr
import requests
import json
import logging
import pandas as pd
from typing import Tuple
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from gradio.routes import mount_gradio_app
# Filter out /v1 requests from the access log
class LogFilter(logging.Filter):
def filter(self, record):
if record.args and len(record.args) >= 3:
if "/v1" in str(record.args[2]):
return True
return False
logger = logging.getLogger("uvicorn.access")
logger.addFilter(LogFilter())
# Application metadata
__version__ = "1.0.0"
__author__ = "lamhieu"
__description__ = "Fast, lightweight, multilingual embeddings solution."
__metadata__ = {
"project": "Lightweight Embeddings Service",
"version": __version__,
"description": (
"Fast and efficient multilingual text and image embeddings service "
"powered by sentence-transformers, supporting 100+ languages and multi-modal inputs"
),
"docs": "https://lamhieu-lightweight-embeddings.hf.space/docs",
"github": "https://github.com/lh0x00/lightweight-embeddings",
"spaces": "https://huggingface.co/spaces/lamhieu/lightweight-embeddings",
}
# Set your embeddings API URL here (change host/port if needed)
EMBEDDINGS_API_URL = "http://localhost:7860/v1/embeddings"
# Markdown description for the main interface
APP_DESCRIPTION = f"""
# π **Lightweight Embeddings API**
The **Lightweight Embeddings API** is a fast, free, and multilingual service designed for generating embeddings and reranking with support for both **text** and **image** inputs.
### β¨ Features & Privacy
- **Free & Multilingual**: Unlimited API service supporting 100+ languages with no usage restrictions
- **Advanced Processing**: High-quality text and image-text embeddings using state-of-the-art models with reranking capabilities
- **Privacy-First**: No storage of input data (text/images), only anonymous usage statistics for service improvement
- **Production-Ready**: Docker deployment, interactive Gradio playground, and comprehensive REST API documentation
- **Open & Efficient**: Fully open-source codebase using lightweight transformer models for rapid inference
### π Resources
- [Documentation]({__metadata__["docs"]}) | [GitHub]({__metadata__["github"]}) | [Playground]({__metadata__["spaces"]})
"""
# Initialize FastAPI application
app = FastAPI(
title="Lightweight Embeddings API",
description=__description__,
version=__version__,
docs_url="/docs",
redoc_url="/redoc",
)
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Adjust if needed for specific domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Include your existing router (which provides /v1/embeddings, /v1/rank, etc.)
from .router import router
app.include_router(router, prefix="/v1")
def call_embeddings_api(user_input: str, selected_model: str) -> str:
"""
Send a request to the /v1/embeddings endpoint with the given model and input.
Return a pretty-printed JSON response or an error message.
"""
payload = {
"model": selected_model,
"input": user_input,
}
headers = {"Content-Type": "application/json"}
try:
response = requests.post(
EMBEDDINGS_API_URL, json=payload, headers=headers, timeout=20
)
except requests.exceptions.RequestException as e:
return f"β Network Error: {str(e)}"
if response.status_code != 200:
# Provide detailed error message
return f"β API Error {response.status_code}: {response.text}"
try:
data = response.json()
return json.dumps(data, indent=2, ensure_ascii=False)
except ValueError:
return "β Failed to parse JSON from API response."
def call_stats_api_df() -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
Calls the /v1/stats endpoint to retrieve analytics data.
Returns two DataFrames (access_df, tokens_df) constructed from the JSON response.
"""
url = "https://lamhieu-lightweight-embeddings.hf.space/v1/stats"
# Fetch stats
response = requests.get(url)
if response.status_code != 200:
raise ValueError(f"Failed to fetch stats: {response.text}")
data = response.json()
access_data = data["access"]
tokens_data = data["tokens"]
def build_stats_df(bucket: dict) -> pd.DataFrame:
"""
Helper to build a DataFrame with columns: Model, total, daily, weekly, monthly, yearly.
bucket is a dictionary like data["access"] or data["tokens"] in the stats response.
"""
all_models = set()
for time_range in ["total", "daily", "weekly", "monthly", "yearly"]:
all_models.update(bucket[time_range].keys())
# Prepare a data structure for DataFrame creation
result_dict = {
"Model": [],
"Total": [],
"Daily": [],
"Weekly": [],
"Monthly": [],
"Yearly": [],
}
for model in sorted(all_models):
result_dict["Model"].append(model)
result_dict["Total"].append(bucket["total"].get(model, 0))
result_dict["Daily"].append(bucket["daily"].get(model, 0))
result_dict["Weekly"].append(bucket["weekly"].get(model, 0))
result_dict["Monthly"].append(bucket["monthly"].get(model, 0))
result_dict["Yearly"].append(bucket["yearly"].get(model, 0))
df = pd.DataFrame(result_dict)
return df
access_df = build_stats_df(access_data)
tokens_df = build_stats_df(tokens_data)
return access_df, tokens_df
def create_main_interface():
"""
Creates a Gradio Blocks interface showing project info and an embeddings playground.
"""
# Available model options for the dropdown
model_options = [
"snowflake-arctic-embed-l-v2.0",
"bge-m3",
"gte-multilingual-base",
"paraphrase-multilingual-MiniLM-L12-v2",
"paraphrase-multilingual-mpnet-base-v2",
"multilingual-e5-small",
"multilingual-e5-base",
"multilingual-e5-large",
"siglip-base-patch16-256-multilingual",
]
with gr.Blocks(title="Lightweight Embeddings", theme="default") as demo:
gr.Markdown(APP_DESCRIPTION)
with gr.Tab("Embeddings Playground"):
with gr.Row():
with gr.Column():
gr.Markdown("### π¬ Try the Embeddings Playground")
input_text = gr.Textbox(
label="Input Text or Image URL",
placeholder="Enter text or an image URL...",
lines=3,
)
model_dropdown = gr.Dropdown(
choices=model_options,
value=model_options[0],
label="Select Model",
)
generate_btn = gr.Button("Generate Embeddings")
output_json = gr.Textbox(
label="Embeddings API Response",
lines=10,
interactive=False,
)
generate_btn.click(
fn=call_embeddings_api,
inputs=[input_text, model_dropdown],
outputs=output_json,
)
with gr.Column():
gr.Markdown(
"""
### π οΈ cURL Examples
**Generate Embeddings (OpenAI compatible)**
```bash
curl -X 'POST' \\
'https://lamhieu-lightweight-embeddings.hf.space/v1/embeddings' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{
"model": "snowflake-arctic-embed-l-v2.0",
"input": "That is a happy person"
}'
```
**Perform Ranking**
```bash
curl -X 'POST' \\
'https://lamhieu-lightweight-embeddings.hf.space/v1/rank' \\
-H 'accept: application/json' \\
-H 'Content-Type: application/json' \\
-d '{
"model": "snowflake-arctic-embed-l-v2.0",
"queries": "That is a happy person",
"candidates": [
"That is a happy dog",
"That is a very happy person",
"Today is a sunny day"
]
}'
```
"""
)
# STATS SECTION: display stats in tables
with gr.Tab("Analytics Stats"):
stats_btn = gr.Button("Get Stats")
access_df = gr.DataFrame(
label="Access Stats",
headers=["Model", "Total", "Daily", "Weekly", "Monthly", "Yearly"],
interactive=False,
)
tokens_df = gr.DataFrame(
label="Token Stats",
headers=["Model", "Total", "Daily", "Weekly", "Monthly", "Yearly"],
interactive=False,
)
stats_btn.click(
fn=call_stats_api_df, inputs=[], outputs=[access_df, tokens_df]
)
return demo
# Create and mount the Gradio Blocks at the root path
main_interface = create_main_interface()
mount_gradio_app(app, main_interface, path="/")
# Startup and shutdown events
@app.on_event("startup")
async def startup_event():
"""
Initialize resources (like model loading) when the application starts.
"""
pass
@app.on_event("shutdown")
async def shutdown_event():
"""
Perform cleanup before the application shuts down.
"""
pass
|