|
import gradio as gr |
|
import hopsworks |
|
import json |
|
from datetime import datetime, timedelta |
|
import pandas as pd |
|
import os |
|
import hopsworks |
|
from hsfs.feature_store import FeatureStore |
|
|
|
|
|
def login(project="ID2223_Project") -> tuple[hopsworks.project.Project, FeatureStore]: |
|
project = hopsworks.login( |
|
api_key_value=os.environ["HOPSWORKS_API_KEY"], |
|
project=project, |
|
) |
|
fs = project.get_feature_store() |
|
|
|
return project, fs |
|
|
|
def get_hist_roi(): |
|
project, fs = login() |
|
|
|
starting_bank = 0 |
|
wager = 1 |
|
league = "E0" |
|
|
|
|
|
main_fg = fs.get_feature_group( |
|
name=f"football_{league.lower()}", |
|
version=1, |
|
) |
|
|
|
pred_fg = fs.get_feature_group( |
|
name=f"football_{league.lower()}_predictions", |
|
version=1, |
|
) |
|
|
|
|
|
query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join( |
|
main_fg.select(["ftour", "avg_gt_2_5", "avg_lt_2_5"]), |
|
on=["datetime", "hometeam", "awayteam"], |
|
) |
|
df: pd.DataFrame = query.read() |
|
|
|
df = df.sort_values(["datetime", "hometeam", "awayteam"], ignore_index=True) |
|
|
|
|
|
df["ftour_encoded"] = df["ftour"].apply( |
|
lambda x: int(x.lower() == "o") if not pd.isna(x) else pd.NA |
|
) |
|
|
|
df.dropna(inplace=True) |
|
|
|
|
|
df["odds"] = df.apply( |
|
lambda row: row["avg_gt_2_5"] if row["predictions"] == 1 else row["avg_lt_2_5"], |
|
axis=1, |
|
) |
|
|
|
|
|
df["profit"] = df.apply( |
|
lambda row: ( |
|
wager * (row["odds"] - 1) |
|
if row["predictions"] == row["ftour_encoded"] |
|
else -wager |
|
), |
|
axis=1, |
|
) |
|
|
|
|
|
df["bank_balance"] = df["profit"].cumsum() + starting_bank |
|
df.drop(columns="odds", inplace=True) |
|
|
|
df['date'] = df['datetime'].dt.date |
|
daily_aggregated = df.groupby('date').agg({ |
|
'profit': 'sum', |
|
'bank_balance': 'last', |
|
}).reset_index() |
|
|
|
daily_aggregated['date'] = daily_aggregated['date'].astype(str) |
|
|
|
total_best = len(df) |
|
bets_won = (df['profit'] > 0).sum() |
|
bets_lost = (df['profit'] < 0).sum() |
|
current_balance = df.iloc[-1]['bank_balance'] |
|
return {"total_bets": total_best, "bets_won": bets_won, "bets_lost": bets_lost, "current_balance": current_balance, "data": daily_aggregated} |
|
|
|
def logout(): |
|
hopsworks.logout() |
|
|
|
def get_todays_predictions(): |
|
project, fs = login() |
|
fg_pred = fs.get_feature_group('football_e0_predictions', version=1) |
|
|
|
|
|
main_fg_query = fg_pred.select( |
|
[ |
|
"datetime", |
|
"hometeam", |
|
"awayteam", |
|
"predictions" |
|
] |
|
).filter(fg_pred.datetime >= datetime.today().strftime("%Y-%m-%d")) |
|
main_df = main_fg_query.read(online=False) |
|
|
|
main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over") |
|
return main_df |
|
|
|
|
|
def get_daily_predictions(): |
|
project, fs = login() |
|
fg_pred = fs.get_feature_group('football_e0_predictions', version=1) |
|
|
|
league = "E0" |
|
|
|
main_fg = fs.get_feature_group( |
|
name=f"football_{league.lower()}", |
|
version=1, |
|
) |
|
|
|
pred_fg = fs.get_feature_group( |
|
name=f"football_{league.lower()}_predictions", |
|
version=1, |
|
) |
|
|
|
|
|
query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join( |
|
main_fg.select(["ftour"]), |
|
on=["datetime", "hometeam", "awayteam"], |
|
) |
|
main_df = query.read() |
|
|
|
|
|
|
|
main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over") |
|
main_df["ftour"] = main_df["ftour"].map(lambda x: "Under" if x == "U" else "Over") |
|
|
|
main_df.rename(columns={"ftour": "Result"}, inplace=True) |
|
return main_df.sort_values(by="datetime", ascending=False).head(10) |
|
|
|
def get_schedule(): |
|
with open('./schedule.json', 'r') as handle: |
|
parsed = json.load(handle) |
|
return pd.DataFrame([{ |
|
"date": datetime.strptime(game['sport_event']['start_time'], "%Y-%m-%dT%H:%M:%S+00:00"), |
|
"home_team": game['sport_event']['competitors'][0]['name'], |
|
"away_team": game['sport_event']['competitors'][1]['name'], |
|
} |
|
for game in parsed["schedules"] |
|
]) |
|
|
|
def get_next10games(schedule): |
|
return schedule.loc[schedule['date'] > today].sort_values(by='date').head(10) |
|
|
|
today = datetime.today() |
|
|
|
roi = get_hist_roi() |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
gr.Label(f"Total bets: {roi['total_bets']}") |
|
gr.Label(f"Bets won: {roi['bets_won']}") |
|
gr.Label(f"Bets lost: {roi['bets_lost']}") |
|
gr.Label(f"Current balance: {round(roi['current_balance'], 2)}") |
|
gr.LinePlot(roi["data"], x="date", y="bank_balance", title="Bank balance over time", y_title="Bank balance", x_title="Date") |
|
gr.Label("Today's predictions") |
|
gr.DataFrame(get_todays_predictions, |
|
headers=["Date", "Home Team", "Away Team", "Prediction"], |
|
every=7200) |
|
gr.Label("Last 10 games") |
|
gr.DataFrame(get_daily_predictions, |
|
headers=["Date", "Home Team", "Away Team", "Prediction"], |
|
every=7200) |
|
|
|
|
|
gr.Label("Upcoming games") |
|
next10 = gr.DataFrame(get_next10games(get_schedule()), |
|
label=None, |
|
headers=["Date", "Home Team", "Away Team"], |
|
interactive=False, |
|
every=7200) |
|
|
|
demo.launch() |