File size: 5,867 Bytes
cce426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cabb0
cce426c
 
 
 
 
 
 
 
45cabb0
 
cce426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810fe52
cce426c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import hopsworks
import json
from datetime import datetime, timedelta
import pandas as pd
import os
import hopsworks
from hsfs.feature_store import FeatureStore


def login(project="ID2223_Project") -> tuple[hopsworks.project.Project, FeatureStore]:
    project = hopsworks.login(
        api_key_value=os.environ["HOPSWORKS_API_KEY"],
        project=project,
    )
    fs = project.get_feature_store()

    return project, fs

def get_hist_roi():
    project, fs = login()
    # Initial bank balance, wager amount and which league
    starting_bank = 0
    wager = 1
    league = "E0"

    # Get feature groups
    main_fg = fs.get_feature_group(
        name=f"football_{league.lower()}",
        version=1,
    )

    pred_fg = fs.get_feature_group(
        name=f"football_{league.lower()}_predictions",
        version=1,
    )

    # Query necessary features
    query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join(
        main_fg.select(["ftour", "avg_gt_2_5", "avg_lt_2_5"]),
        on=["datetime", "hometeam", "awayteam"],
    )
    df: pd.DataFrame = query.read()

    df = df.sort_values(["datetime", "hometeam", "awayteam"], ignore_index=True)

    # Encode the full time over/under results
    df["ftour_encoded"] = df["ftour"].apply(
        lambda x: int(x.lower() == "o") if not pd.isna(x) else pd.NA
    )

    df.dropna(inplace=True)

    # Determine the odds based on predictions
    df["odds"] = df.apply(
        lambda row: row["avg_gt_2_5"] if row["predictions"] == 1 else row["avg_lt_2_5"],
        axis=1,
    )

    # Calculate profit/loss for each game
    df["profit"] = df.apply(
        lambda row: (
            wager * (row["odds"] - 1)
            if row["predictions"] == row["ftour_encoded"]
            else -wager
        ),
        axis=1,
    )

    # Calculate cumulative bank balance
    df["bank_balance"] = df["profit"].cumsum() + starting_bank
    df.drop(columns="odds", inplace=True)

    df['date'] = df['datetime'].dt.date
    daily_aggregated = df.groupby('date').agg({
        'profit': 'sum',              # Total profit
        'bank_balance': 'last',       # Last bank balance of the day
        }).reset_index()

    daily_aggregated['date'] = daily_aggregated['date'].astype(str)

    total_best = len(df)
    bets_won = (df['profit'] > 0).sum()
    bets_lost = (df['profit'] < 0).sum()
    current_balance = df.iloc[-1]['bank_balance']
    return {"total_bets": total_best, "bets_won": bets_won, "bets_lost": bets_lost, "current_balance": current_balance, "data": daily_aggregated}

def logout():
    hopsworks.logout()

def get_todays_predictions():
    project, fs = login()
    fg_pred = fs.get_feature_group('football_e0_predictions', version=1)

    # Query the latest row from main_fg based
    main_fg_query = fg_pred.select(
        [
            "datetime",
            "hometeam",
            "awayteam",
            "predictions"
        ]
    ).filter(fg_pred.datetime >= datetime.today().strftime("%Y-%m-%d"))
    main_df = main_fg_query.read(online=False)

    main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over")
    return main_df


def get_daily_predictions():
    project, fs = login()
    fg_pred = fs.get_feature_group('football_e0_predictions', version=1)

    league = "E0"
      # Get feature groups
    main_fg = fs.get_feature_group(
        name=f"football_{league.lower()}",
        version=1,
    )

    pred_fg = fs.get_feature_group(
        name=f"football_{league.lower()}_predictions",
        version=1,
    )

    # Query necessary features
    query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join(
        main_fg.select(["ftour"]),
        on=["datetime", "hometeam", "awayteam"],
    )
    main_df = query.read()



    main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over")
    main_df["ftour"] = main_df["ftour"].map(lambda x: "Under" if x == "U" else "Over")

    main_df.rename(columns={"ftour": "Result"}, inplace=True)
    return main_df.sort_values(by="datetime", ascending=False).head(10)

def get_schedule():
    with open('./schedule.json', 'r') as handle:
        parsed = json.load(handle)
        return pd.DataFrame([{
            "date": datetime.strptime(game['sport_event']['start_time'], "%Y-%m-%dT%H:%M:%S+00:00"),
            "home_team": game['sport_event']['competitors'][0]['name'],
            "away_team": game['sport_event']['competitors'][1]['name'],
        }
        for game in parsed["schedules"]
        ])
    
def get_next10games(schedule):
    return schedule.loc[schedule['date'] > today].sort_values(by='date').head(10)

today = datetime.today()

roi = get_hist_roi()


with gr.Blocks() as demo:
    with gr.Row():
        gr.Label(f"Total bets: {roi['total_bets']}")
        gr.Label(f"Bets won: {roi['bets_won']}")
        gr.Label(f"Bets lost: {roi['bets_lost']}")
        gr.Label(f"Current balance: {round(roi['current_balance'], 2)}")
    gr.LinePlot(roi["data"], x="date", y="bank_balance", title="Bank balance over time", y_title="Bank balance", x_title="Date")
    gr.Label("Today's predictions")
    gr.DataFrame(get_todays_predictions,
                 headers=["Date", "Home Team", "Away Team", "Prediction"],
                 every=7200)  # 2hrs
    gr.Label("Last 10 games")
    gr.DataFrame(get_daily_predictions,
                 headers=["Date", "Home Team", "Away Team", "Prediction"],
                 every=7200)  # 2hrs
    
    
    gr.Label("Upcoming games")
    next10 = gr.DataFrame(get_next10games(get_schedule()), 
                         label=None, 
                         headers=["Date", "Home Team", "Away Team"],
                          interactive=False,
                          every=7200)  # 2hrs
                        
demo.launch()