MyNameIsSimon commited on
Commit
cce426c
·
1 Parent(s): a0db73f

initial upload

Browse files
Files changed (3) hide show
  1. requirements.txt +3 -0
  2. schedule.json +0 -0
  3. ui.py +182 -0
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ hopsworks[python]
3
+ pandas
schedule.json ADDED
The diff for this file is too large to render. See raw diff
 
ui.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import hopsworks
3
+ import json
4
+ from datetime import datetime, timedelta
5
+ import pandas as pd
6
+ import os
7
+ import hopsworks
8
+ from hsfs.feature_store import FeatureStore
9
+
10
+
11
+ def login(project="ID2223_Project") -> tuple[hopsworks.project.Project, FeatureStore]:
12
+ project = hopsworks.login(
13
+ api_key_value=os.environ["HOPSWORKS_API_KEY"],
14
+ project=project,
15
+ )
16
+ fs = project.get_feature_store()
17
+
18
+ return project, fs
19
+
20
+ def get_hist_roi():
21
+ project, fs = login()
22
+ # Initial bank balance, wager amount and which league
23
+ starting_bank = 0
24
+ wager = 1
25
+ league = "E0"
26
+
27
+ # Get feature groups
28
+ main_fg = fs.get_feature_group(
29
+ name=f"football_{league.lower()}",
30
+ version=1,
31
+ )
32
+
33
+ pred_fg = fs.get_feature_group(
34
+ name=f"football_{league.lower()}_predictions",
35
+ version=1,
36
+ )
37
+
38
+ # Query necessary features
39
+ query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join(
40
+ main_fg.select(["ftour", "avg_gt_2_5", "avg_lt_2_5"]),
41
+ on=["datetime", "hometeam", "awayteam"],
42
+ )
43
+ df = query.read()
44
+
45
+ df = df.sort_values(["datetime", "hometeam", "awayteam"], ignore_index=True)
46
+
47
+ # Encode the full time over/under results
48
+ df["ftour_encoded"] = df["ftour"].apply(
49
+ lambda x: int(x.lower() == "o") if not pd.isna(x) else pd.NA
50
+ )
51
+
52
+ # Determine the odds based on predictions
53
+ df["odds"] = df.apply(
54
+ lambda row: row["avg_gt_2_5"] if row["predictions"] == 1 else row["avg_lt_2_5"],
55
+ axis=1,
56
+ )
57
+
58
+ # Calculate profit/loss for each game
59
+ df["profit"] = df.apply(
60
+ lambda row: (
61
+ wager * (row["odds"] - 1)
62
+ if row["predictions"] == row["ftour_encoded"]
63
+ else -wager
64
+ ),
65
+ axis=1,
66
+ )
67
+
68
+ # Calculate cumulative bank balance
69
+ df["bank_balance"] = df["profit"].cumsum() + starting_bank
70
+ df.drop(columns="odds", inplace=True)
71
+
72
+ df['date'] = df['datetime'].dt.date
73
+ daily_aggregated = df.groupby('date').agg({
74
+ 'profit': 'sum', # Total profit
75
+ 'bank_balance': 'last', # Last bank balance of the day
76
+ }).reset_index()
77
+
78
+ daily_aggregated['date'] = daily_aggregated['date'].astype(str)
79
+
80
+ total_best = len(df)
81
+ bets_won = (df['profit'] > 0).sum()
82
+ bets_lost = (df['profit'] < 0).sum()
83
+ current_balance = df.iloc[-1]['bank_balance']
84
+ return {"total_bets": total_best, "bets_won": bets_won, "bets_lost": bets_lost, "current_balance": current_balance, "data": daily_aggregated}
85
+
86
+ def logout():
87
+ hopsworks.logout()
88
+
89
+ def get_todays_predictions():
90
+ project, fs = login()
91
+ fg_pred = fs.get_feature_group('football_e0_predictions', version=1)
92
+
93
+ # Query the latest row from main_fg based
94
+ main_fg_query = fg_pred.select(
95
+ [
96
+ "datetime",
97
+ "hometeam",
98
+ "awayteam",
99
+ "predictions"
100
+ ]
101
+ ).filter(fg_pred.datetime >= datetime.today().strftime("%Y-%m-%d"))
102
+ main_df = main_fg_query.read(online=False)
103
+
104
+ main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over")
105
+ return main_df
106
+
107
+
108
+ def get_daily_predictions():
109
+ project, fs = login()
110
+ fg_pred = fs.get_feature_group('football_e0_predictions', version=1)
111
+
112
+ league = "E0"
113
+ # Get feature groups
114
+ main_fg = fs.get_feature_group(
115
+ name=f"football_{league.lower()}",
116
+ version=1,
117
+ )
118
+
119
+ pred_fg = fs.get_feature_group(
120
+ name=f"football_{league.lower()}_predictions",
121
+ version=1,
122
+ )
123
+
124
+ # Query necessary features
125
+ query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join(
126
+ main_fg.select(["ftour"]),
127
+ on=["datetime", "hometeam", "awayteam"],
128
+ )
129
+ main_df = query.read()
130
+
131
+
132
+
133
+ main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over")
134
+ main_df["ftour"] = main_df["ftour"].map(lambda x: "Under" if x == "U" else "Over")
135
+
136
+ main_df.rename(columns={"ftour": "Result"}, inplace=True)
137
+ return main_df.sort_values(by="datetime", ascending=False).head(10)
138
+
139
+ def get_schedule():
140
+ with open('./schedule.json', 'r') as handle:
141
+ parsed = json.load(handle)
142
+ return pd.DataFrame([{
143
+ "date": datetime.strptime(game['sport_event']['start_time'], "%Y-%m-%dT%H:%M:%S+00:00"),
144
+ "home_team": game['sport_event']['competitors'][0]['name'],
145
+ "away_team": game['sport_event']['competitors'][1]['name'],
146
+ }
147
+ for game in parsed["schedules"]
148
+ ])
149
+
150
+ def get_next10games(schedule):
151
+ return schedule.loc[schedule['date'] > today].sort_values(by='date').head(10)
152
+
153
+ today = datetime.today()
154
+
155
+ roi = get_hist_roi()
156
+
157
+
158
+ with gr.Blocks() as demo:
159
+ with gr.Row():
160
+ gr.Label(f"Total bets: {roi['total_bets']}")
161
+ gr.Label(f"Bets won: {roi['bets_won']}")
162
+ gr.Label(f"Bets lost: {roi['bets_lost']}")
163
+ gr.Label(f"Current balance: {roi['current_balance']}")
164
+ gr.LinePlot(roi["data"], x="date", y="bank_balance", title="Bank balance over time", y_title="Bank balance", x_title="Date")
165
+ gr.Label("Today's predictions")
166
+ gr.DataFrame(get_todays_predictions,
167
+ headers=["Date", "Home Team", "Away Team", "Prediction"],
168
+ every=7200) # 2hrs
169
+ gr.Label("Last 10 games")
170
+ gr.DataFrame(get_daily_predictions,
171
+ headers=["Date", "Home Team", "Away Team", "Prediction"],
172
+ every=7200) # 2hrs
173
+
174
+
175
+ gr.Label("Upcoming games")
176
+ next10 = gr.DataFrame(get_next10games(get_schedule()),
177
+ label=None,
178
+ headers=["Date", "Home Team", "Away Team"],
179
+ interactive=False,
180
+ every=7200) # 2hrs
181
+
182
+ demo.launch()