Commit
·
cce426c
1
Parent(s):
a0db73f
initial upload
Browse files- requirements.txt +3 -0
- schedule.json +0 -0
- ui.py +182 -0
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
hopsworks[python]
|
3 |
+
pandas
|
schedule.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ui.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import hopsworks
|
3 |
+
import json
|
4 |
+
from datetime import datetime, timedelta
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
import hopsworks
|
8 |
+
from hsfs.feature_store import FeatureStore
|
9 |
+
|
10 |
+
|
11 |
+
def login(project="ID2223_Project") -> tuple[hopsworks.project.Project, FeatureStore]:
|
12 |
+
project = hopsworks.login(
|
13 |
+
api_key_value=os.environ["HOPSWORKS_API_KEY"],
|
14 |
+
project=project,
|
15 |
+
)
|
16 |
+
fs = project.get_feature_store()
|
17 |
+
|
18 |
+
return project, fs
|
19 |
+
|
20 |
+
def get_hist_roi():
|
21 |
+
project, fs = login()
|
22 |
+
# Initial bank balance, wager amount and which league
|
23 |
+
starting_bank = 0
|
24 |
+
wager = 1
|
25 |
+
league = "E0"
|
26 |
+
|
27 |
+
# Get feature groups
|
28 |
+
main_fg = fs.get_feature_group(
|
29 |
+
name=f"football_{league.lower()}",
|
30 |
+
version=1,
|
31 |
+
)
|
32 |
+
|
33 |
+
pred_fg = fs.get_feature_group(
|
34 |
+
name=f"football_{league.lower()}_predictions",
|
35 |
+
version=1,
|
36 |
+
)
|
37 |
+
|
38 |
+
# Query necessary features
|
39 |
+
query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join(
|
40 |
+
main_fg.select(["ftour", "avg_gt_2_5", "avg_lt_2_5"]),
|
41 |
+
on=["datetime", "hometeam", "awayteam"],
|
42 |
+
)
|
43 |
+
df = query.read()
|
44 |
+
|
45 |
+
df = df.sort_values(["datetime", "hometeam", "awayteam"], ignore_index=True)
|
46 |
+
|
47 |
+
# Encode the full time over/under results
|
48 |
+
df["ftour_encoded"] = df["ftour"].apply(
|
49 |
+
lambda x: int(x.lower() == "o") if not pd.isna(x) else pd.NA
|
50 |
+
)
|
51 |
+
|
52 |
+
# Determine the odds based on predictions
|
53 |
+
df["odds"] = df.apply(
|
54 |
+
lambda row: row["avg_gt_2_5"] if row["predictions"] == 1 else row["avg_lt_2_5"],
|
55 |
+
axis=1,
|
56 |
+
)
|
57 |
+
|
58 |
+
# Calculate profit/loss for each game
|
59 |
+
df["profit"] = df.apply(
|
60 |
+
lambda row: (
|
61 |
+
wager * (row["odds"] - 1)
|
62 |
+
if row["predictions"] == row["ftour_encoded"]
|
63 |
+
else -wager
|
64 |
+
),
|
65 |
+
axis=1,
|
66 |
+
)
|
67 |
+
|
68 |
+
# Calculate cumulative bank balance
|
69 |
+
df["bank_balance"] = df["profit"].cumsum() + starting_bank
|
70 |
+
df.drop(columns="odds", inplace=True)
|
71 |
+
|
72 |
+
df['date'] = df['datetime'].dt.date
|
73 |
+
daily_aggregated = df.groupby('date').agg({
|
74 |
+
'profit': 'sum', # Total profit
|
75 |
+
'bank_balance': 'last', # Last bank balance of the day
|
76 |
+
}).reset_index()
|
77 |
+
|
78 |
+
daily_aggregated['date'] = daily_aggregated['date'].astype(str)
|
79 |
+
|
80 |
+
total_best = len(df)
|
81 |
+
bets_won = (df['profit'] > 0).sum()
|
82 |
+
bets_lost = (df['profit'] < 0).sum()
|
83 |
+
current_balance = df.iloc[-1]['bank_balance']
|
84 |
+
return {"total_bets": total_best, "bets_won": bets_won, "bets_lost": bets_lost, "current_balance": current_balance, "data": daily_aggregated}
|
85 |
+
|
86 |
+
def logout():
|
87 |
+
hopsworks.logout()
|
88 |
+
|
89 |
+
def get_todays_predictions():
|
90 |
+
project, fs = login()
|
91 |
+
fg_pred = fs.get_feature_group('football_e0_predictions', version=1)
|
92 |
+
|
93 |
+
# Query the latest row from main_fg based
|
94 |
+
main_fg_query = fg_pred.select(
|
95 |
+
[
|
96 |
+
"datetime",
|
97 |
+
"hometeam",
|
98 |
+
"awayteam",
|
99 |
+
"predictions"
|
100 |
+
]
|
101 |
+
).filter(fg_pred.datetime >= datetime.today().strftime("%Y-%m-%d"))
|
102 |
+
main_df = main_fg_query.read(online=False)
|
103 |
+
|
104 |
+
main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over")
|
105 |
+
return main_df
|
106 |
+
|
107 |
+
|
108 |
+
def get_daily_predictions():
|
109 |
+
project, fs = login()
|
110 |
+
fg_pred = fs.get_feature_group('football_e0_predictions', version=1)
|
111 |
+
|
112 |
+
league = "E0"
|
113 |
+
# Get feature groups
|
114 |
+
main_fg = fs.get_feature_group(
|
115 |
+
name=f"football_{league.lower()}",
|
116 |
+
version=1,
|
117 |
+
)
|
118 |
+
|
119 |
+
pred_fg = fs.get_feature_group(
|
120 |
+
name=f"football_{league.lower()}_predictions",
|
121 |
+
version=1,
|
122 |
+
)
|
123 |
+
|
124 |
+
# Query necessary features
|
125 |
+
query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join(
|
126 |
+
main_fg.select(["ftour"]),
|
127 |
+
on=["datetime", "hometeam", "awayteam"],
|
128 |
+
)
|
129 |
+
main_df = query.read()
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over")
|
134 |
+
main_df["ftour"] = main_df["ftour"].map(lambda x: "Under" if x == "U" else "Over")
|
135 |
+
|
136 |
+
main_df.rename(columns={"ftour": "Result"}, inplace=True)
|
137 |
+
return main_df.sort_values(by="datetime", ascending=False).head(10)
|
138 |
+
|
139 |
+
def get_schedule():
|
140 |
+
with open('./schedule.json', 'r') as handle:
|
141 |
+
parsed = json.load(handle)
|
142 |
+
return pd.DataFrame([{
|
143 |
+
"date": datetime.strptime(game['sport_event']['start_time'], "%Y-%m-%dT%H:%M:%S+00:00"),
|
144 |
+
"home_team": game['sport_event']['competitors'][0]['name'],
|
145 |
+
"away_team": game['sport_event']['competitors'][1]['name'],
|
146 |
+
}
|
147 |
+
for game in parsed["schedules"]
|
148 |
+
])
|
149 |
+
|
150 |
+
def get_next10games(schedule):
|
151 |
+
return schedule.loc[schedule['date'] > today].sort_values(by='date').head(10)
|
152 |
+
|
153 |
+
today = datetime.today()
|
154 |
+
|
155 |
+
roi = get_hist_roi()
|
156 |
+
|
157 |
+
|
158 |
+
with gr.Blocks() as demo:
|
159 |
+
with gr.Row():
|
160 |
+
gr.Label(f"Total bets: {roi['total_bets']}")
|
161 |
+
gr.Label(f"Bets won: {roi['bets_won']}")
|
162 |
+
gr.Label(f"Bets lost: {roi['bets_lost']}")
|
163 |
+
gr.Label(f"Current balance: {roi['current_balance']}")
|
164 |
+
gr.LinePlot(roi["data"], x="date", y="bank_balance", title="Bank balance over time", y_title="Bank balance", x_title="Date")
|
165 |
+
gr.Label("Today's predictions")
|
166 |
+
gr.DataFrame(get_todays_predictions,
|
167 |
+
headers=["Date", "Home Team", "Away Team", "Prediction"],
|
168 |
+
every=7200) # 2hrs
|
169 |
+
gr.Label("Last 10 games")
|
170 |
+
gr.DataFrame(get_daily_predictions,
|
171 |
+
headers=["Date", "Home Team", "Away Team", "Prediction"],
|
172 |
+
every=7200) # 2hrs
|
173 |
+
|
174 |
+
|
175 |
+
gr.Label("Upcoming games")
|
176 |
+
next10 = gr.DataFrame(get_next10games(get_schedule()),
|
177 |
+
label=None,
|
178 |
+
headers=["Date", "Home Team", "Away Team"],
|
179 |
+
interactive=False,
|
180 |
+
every=7200) # 2hrs
|
181 |
+
|
182 |
+
demo.launch()
|