MotionBERT / lib /model /DSTformer.py
kzielins
motion bert project structure added
dbf90d0
import torch
import torch.nn as nn
import math
import warnings
import random
import numpy as np
from collections import OrderedDict
from functools import partial
from itertools import repeat
from lib.model.drop import DropPath
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
class MLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., st_mode='vanilla'):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.mode = st_mode
if self.mode == 'parallel':
self.ts_attn = nn.Linear(dim*2, dim*2)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
else:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_count_s = None
self.attn_count_t = None
def forward(self, x, seqlen=1):
B, N, C = x.shape
if self.mode == 'series':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_spatial(q, k, v)
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_temporal(q, k, v, seqlen=seqlen)
elif self.mode == 'parallel':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x_t = self.forward_temporal(q, k, v, seqlen=seqlen)
x_s = self.forward_spatial(q, k, v)
alpha = torch.cat([x_s, x_t], dim=-1)
alpha = alpha.mean(dim=1, keepdim=True)
alpha = self.ts_attn(alpha).reshape(B, 1, C, 2)
alpha = alpha.softmax(dim=-1)
x = x_t * alpha[:,:,:,1] + x_s * alpha[:,:,:,0]
elif self.mode == 'coupling':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_coupling(q, k, v, seqlen=seqlen)
elif self.mode == 'vanilla':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_spatial(q, k, v)
elif self.mode == 'temporal':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_temporal(q, k, v, seqlen=seqlen)
elif self.mode == 'spatial':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_spatial(q, k, v)
else:
raise NotImplementedError(self.mode)
x = self.proj(x)
x = self.proj_drop(x)
return x
def reshape_T(self, x, seqlen=1, inverse=False):
if not inverse:
N, C = x.shape[-2:]
x = x.reshape(-1, seqlen, self.num_heads, N, C).transpose(1,2)
x = x.reshape(-1, self.num_heads, seqlen*N, C) #(B, H, TN, c)
else:
TN, C = x.shape[-2:]
x = x.reshape(-1, self.num_heads, seqlen, TN // seqlen, C).transpose(1,2)
x = x.reshape(-1, self.num_heads, TN // seqlen, C) #(BT, H, N, C)
return x
def forward_coupling(self, q, k, v, seqlen=8):
BT, _, N, C = q.shape
q = self.reshape_T(q, seqlen)
k = self.reshape_T(k, seqlen)
v = self.reshape_T(v, seqlen)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = self.reshape_T(x, seqlen, inverse=True)
x = x.transpose(1,2).reshape(BT, N, C*self.num_heads)
return x
def forward_spatial(self, q, k, v):
B, _, N, C = q.shape
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1,2).reshape(B, N, C*self.num_heads)
return x
def forward_temporal(self, q, k, v, seqlen=8):
B, _, N, C = q.shape
qt = q.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C)
kt = k.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C)
vt = v.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C)
attn = (qt @ kt.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ vt #(B, H, N, T, C)
x = x.permute(0, 3, 2, 1, 4).reshape(B, N, C*self.num_heads)
return x
def count_attn(self, attn):
attn = attn.detach().cpu().numpy()
attn = attn.mean(axis=1)
attn_t = attn[:, :, 1].mean(axis=1)
attn_s = attn[:, :, 0].mean(axis=1)
if self.attn_count_s is None:
self.attn_count_s = attn_s
self.attn_count_t = attn_t
else:
self.attn_count_s = np.concatenate([self.attn_count_s, attn_s], axis=0)
self.attn_count_t = np.concatenate([self.attn_count_t, attn_t], axis=0)
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., mlp_out_ratio=1., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, st_mode='stage_st', att_fuse=False):
super().__init__()
# assert 'stage' in st_mode
self.st_mode = st_mode
self.norm1_s = norm_layer(dim)
self.norm1_t = norm_layer(dim)
self.attn_s = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, st_mode="spatial")
self.attn_t = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, st_mode="temporal")
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2_s = norm_layer(dim)
self.norm2_t = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
mlp_out_dim = int(dim * mlp_out_ratio)
self.mlp_s = MLP(in_features=dim, hidden_features=mlp_hidden_dim, out_features=mlp_out_dim, act_layer=act_layer, drop=drop)
self.mlp_t = MLP(in_features=dim, hidden_features=mlp_hidden_dim, out_features=mlp_out_dim, act_layer=act_layer, drop=drop)
self.att_fuse = att_fuse
if self.att_fuse:
self.ts_attn = nn.Linear(dim*2, dim*2)
def forward(self, x, seqlen=1):
if self.st_mode=='stage_st':
x = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen))
x = x + self.drop_path(self.mlp_s(self.norm2_s(x)))
x = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen))
x = x + self.drop_path(self.mlp_t(self.norm2_t(x)))
elif self.st_mode=='stage_ts':
x = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen))
x = x + self.drop_path(self.mlp_t(self.norm2_t(x)))
x = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen))
x = x + self.drop_path(self.mlp_s(self.norm2_s(x)))
elif self.st_mode=='stage_para':
x_t = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen))
x_t = x_t + self.drop_path(self.mlp_t(self.norm2_t(x_t)))
x_s = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen))
x_s = x_s + self.drop_path(self.mlp_s(self.norm2_s(x_s)))
if self.att_fuse:
# x_s, x_t: [BF, J, dim]
alpha = torch.cat([x_s, x_t], dim=-1)
BF, J = alpha.shape[:2]
# alpha = alpha.mean(dim=1, keepdim=True)
alpha = self.ts_attn(alpha).reshape(BF, J, -1, 2)
alpha = alpha.softmax(dim=-1)
x = x_t * alpha[:,:,:,1] + x_s * alpha[:,:,:,0]
else:
x = (x_s + x_t)*0.5
else:
raise NotImplementedError(self.st_mode)
return x
class DSTformer(nn.Module):
def __init__(self, dim_in=3, dim_out=3, dim_feat=256, dim_rep=512,
depth=5, num_heads=8, mlp_ratio=4,
num_joints=17, maxlen=243,
qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, att_fuse=True):
super().__init__()
self.dim_out = dim_out
self.dim_feat = dim_feat
self.joints_embed = nn.Linear(dim_in, dim_feat)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks_st = nn.ModuleList([
Block(
dim=dim_feat, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
st_mode="stage_st")
for i in range(depth)])
self.blocks_ts = nn.ModuleList([
Block(
dim=dim_feat, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
st_mode="stage_ts")
for i in range(depth)])
self.norm = norm_layer(dim_feat)
if dim_rep:
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(dim_feat, dim_rep)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
self.head = nn.Linear(dim_rep, dim_out) if dim_out > 0 else nn.Identity()
self.temp_embed = nn.Parameter(torch.zeros(1, maxlen, 1, dim_feat))
self.pos_embed = nn.Parameter(torch.zeros(1, num_joints, dim_feat))
trunc_normal_(self.temp_embed, std=.02)
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
self.att_fuse = att_fuse
if self.att_fuse:
self.ts_attn = nn.ModuleList([nn.Linear(dim_feat*2, 2) for i in range(depth)])
for i in range(depth):
self.ts_attn[i].weight.data.fill_(0)
self.ts_attn[i].bias.data.fill_(0.5)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_classifier(self):
return self.head
def reset_classifier(self, dim_out, global_pool=''):
self.dim_out = dim_out
self.head = nn.Linear(self.dim_feat, dim_out) if dim_out > 0 else nn.Identity()
def forward(self, x, return_rep=False):
B, F, J, C = x.shape
x = x.reshape(-1, J, C)
BF = x.shape[0]
x = self.joints_embed(x)
x = x + self.pos_embed
_, J, C = x.shape
x = x.reshape(-1, F, J, C) + self.temp_embed[:,:F,:,:]
x = x.reshape(BF, J, C)
x = self.pos_drop(x)
alphas = []
for idx, (blk_st, blk_ts) in enumerate(zip(self.blocks_st, self.blocks_ts)):
x_st = blk_st(x, F)
x_ts = blk_ts(x, F)
if self.att_fuse:
att = self.ts_attn[idx]
alpha = torch.cat([x_st, x_ts], dim=-1)
BF, J = alpha.shape[:2]
alpha = att(alpha)
alpha = alpha.softmax(dim=-1)
x = x_st * alpha[:,:,0:1] + x_ts * alpha[:,:,1:2]
else:
x = (x_st + x_ts)*0.5
x = self.norm(x)
x = x.reshape(B, F, J, -1)
x = self.pre_logits(x) # [B, F, J, dim_feat]
if return_rep:
return x
x = self.head(x)
return x
def get_representation(self, x):
return self.forward(x, return_rep=True)