Spaces:
Configuration error
Configuration error
File size: 16,101 Bytes
dbf90d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import torch
import torch.nn as nn
import math
import warnings
import random
import numpy as np
from collections import OrderedDict
from functools import partial
from itertools import repeat
from lib.model.drop import DropPath
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
class MLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., st_mode='vanilla'):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.mode = st_mode
if self.mode == 'parallel':
self.ts_attn = nn.Linear(dim*2, dim*2)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
else:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_count_s = None
self.attn_count_t = None
def forward(self, x, seqlen=1):
B, N, C = x.shape
if self.mode == 'series':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_spatial(q, k, v)
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_temporal(q, k, v, seqlen=seqlen)
elif self.mode == 'parallel':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x_t = self.forward_temporal(q, k, v, seqlen=seqlen)
x_s = self.forward_spatial(q, k, v)
alpha = torch.cat([x_s, x_t], dim=-1)
alpha = alpha.mean(dim=1, keepdim=True)
alpha = self.ts_attn(alpha).reshape(B, 1, C, 2)
alpha = alpha.softmax(dim=-1)
x = x_t * alpha[:,:,:,1] + x_s * alpha[:,:,:,0]
elif self.mode == 'coupling':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_coupling(q, k, v, seqlen=seqlen)
elif self.mode == 'vanilla':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_spatial(q, k, v)
elif self.mode == 'temporal':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_temporal(q, k, v, seqlen=seqlen)
elif self.mode == 'spatial':
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = self.forward_spatial(q, k, v)
else:
raise NotImplementedError(self.mode)
x = self.proj(x)
x = self.proj_drop(x)
return x
def reshape_T(self, x, seqlen=1, inverse=False):
if not inverse:
N, C = x.shape[-2:]
x = x.reshape(-1, seqlen, self.num_heads, N, C).transpose(1,2)
x = x.reshape(-1, self.num_heads, seqlen*N, C) #(B, H, TN, c)
else:
TN, C = x.shape[-2:]
x = x.reshape(-1, self.num_heads, seqlen, TN // seqlen, C).transpose(1,2)
x = x.reshape(-1, self.num_heads, TN // seqlen, C) #(BT, H, N, C)
return x
def forward_coupling(self, q, k, v, seqlen=8):
BT, _, N, C = q.shape
q = self.reshape_T(q, seqlen)
k = self.reshape_T(k, seqlen)
v = self.reshape_T(v, seqlen)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = self.reshape_T(x, seqlen, inverse=True)
x = x.transpose(1,2).reshape(BT, N, C*self.num_heads)
return x
def forward_spatial(self, q, k, v):
B, _, N, C = q.shape
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1,2).reshape(B, N, C*self.num_heads)
return x
def forward_temporal(self, q, k, v, seqlen=8):
B, _, N, C = q.shape
qt = q.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C)
kt = k.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C)
vt = v.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C)
attn = (qt @ kt.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ vt #(B, H, N, T, C)
x = x.permute(0, 3, 2, 1, 4).reshape(B, N, C*self.num_heads)
return x
def count_attn(self, attn):
attn = attn.detach().cpu().numpy()
attn = attn.mean(axis=1)
attn_t = attn[:, :, 1].mean(axis=1)
attn_s = attn[:, :, 0].mean(axis=1)
if self.attn_count_s is None:
self.attn_count_s = attn_s
self.attn_count_t = attn_t
else:
self.attn_count_s = np.concatenate([self.attn_count_s, attn_s], axis=0)
self.attn_count_t = np.concatenate([self.attn_count_t, attn_t], axis=0)
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., mlp_out_ratio=1., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, st_mode='stage_st', att_fuse=False):
super().__init__()
# assert 'stage' in st_mode
self.st_mode = st_mode
self.norm1_s = norm_layer(dim)
self.norm1_t = norm_layer(dim)
self.attn_s = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, st_mode="spatial")
self.attn_t = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, st_mode="temporal")
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2_s = norm_layer(dim)
self.norm2_t = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
mlp_out_dim = int(dim * mlp_out_ratio)
self.mlp_s = MLP(in_features=dim, hidden_features=mlp_hidden_dim, out_features=mlp_out_dim, act_layer=act_layer, drop=drop)
self.mlp_t = MLP(in_features=dim, hidden_features=mlp_hidden_dim, out_features=mlp_out_dim, act_layer=act_layer, drop=drop)
self.att_fuse = att_fuse
if self.att_fuse:
self.ts_attn = nn.Linear(dim*2, dim*2)
def forward(self, x, seqlen=1):
if self.st_mode=='stage_st':
x = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen))
x = x + self.drop_path(self.mlp_s(self.norm2_s(x)))
x = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen))
x = x + self.drop_path(self.mlp_t(self.norm2_t(x)))
elif self.st_mode=='stage_ts':
x = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen))
x = x + self.drop_path(self.mlp_t(self.norm2_t(x)))
x = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen))
x = x + self.drop_path(self.mlp_s(self.norm2_s(x)))
elif self.st_mode=='stage_para':
x_t = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen))
x_t = x_t + self.drop_path(self.mlp_t(self.norm2_t(x_t)))
x_s = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen))
x_s = x_s + self.drop_path(self.mlp_s(self.norm2_s(x_s)))
if self.att_fuse:
# x_s, x_t: [BF, J, dim]
alpha = torch.cat([x_s, x_t], dim=-1)
BF, J = alpha.shape[:2]
# alpha = alpha.mean(dim=1, keepdim=True)
alpha = self.ts_attn(alpha).reshape(BF, J, -1, 2)
alpha = alpha.softmax(dim=-1)
x = x_t * alpha[:,:,:,1] + x_s * alpha[:,:,:,0]
else:
x = (x_s + x_t)*0.5
else:
raise NotImplementedError(self.st_mode)
return x
class DSTformer(nn.Module):
def __init__(self, dim_in=3, dim_out=3, dim_feat=256, dim_rep=512,
depth=5, num_heads=8, mlp_ratio=4,
num_joints=17, maxlen=243,
qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, att_fuse=True):
super().__init__()
self.dim_out = dim_out
self.dim_feat = dim_feat
self.joints_embed = nn.Linear(dim_in, dim_feat)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks_st = nn.ModuleList([
Block(
dim=dim_feat, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
st_mode="stage_st")
for i in range(depth)])
self.blocks_ts = nn.ModuleList([
Block(
dim=dim_feat, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
st_mode="stage_ts")
for i in range(depth)])
self.norm = norm_layer(dim_feat)
if dim_rep:
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(dim_feat, dim_rep)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
self.head = nn.Linear(dim_rep, dim_out) if dim_out > 0 else nn.Identity()
self.temp_embed = nn.Parameter(torch.zeros(1, maxlen, 1, dim_feat))
self.pos_embed = nn.Parameter(torch.zeros(1, num_joints, dim_feat))
trunc_normal_(self.temp_embed, std=.02)
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
self.att_fuse = att_fuse
if self.att_fuse:
self.ts_attn = nn.ModuleList([nn.Linear(dim_feat*2, 2) for i in range(depth)])
for i in range(depth):
self.ts_attn[i].weight.data.fill_(0)
self.ts_attn[i].bias.data.fill_(0.5)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_classifier(self):
return self.head
def reset_classifier(self, dim_out, global_pool=''):
self.dim_out = dim_out
self.head = nn.Linear(self.dim_feat, dim_out) if dim_out > 0 else nn.Identity()
def forward(self, x, return_rep=False):
B, F, J, C = x.shape
x = x.reshape(-1, J, C)
BF = x.shape[0]
x = self.joints_embed(x)
x = x + self.pos_embed
_, J, C = x.shape
x = x.reshape(-1, F, J, C) + self.temp_embed[:,:F,:,:]
x = x.reshape(BF, J, C)
x = self.pos_drop(x)
alphas = []
for idx, (blk_st, blk_ts) in enumerate(zip(self.blocks_st, self.blocks_ts)):
x_st = blk_st(x, F)
x_ts = blk_ts(x, F)
if self.att_fuse:
att = self.ts_attn[idx]
alpha = torch.cat([x_st, x_ts], dim=-1)
BF, J = alpha.shape[:2]
alpha = att(alpha)
alpha = alpha.softmax(dim=-1)
x = x_st * alpha[:,:,0:1] + x_ts * alpha[:,:,1:2]
else:
x = (x_st + x_ts)*0.5
x = self.norm(x)
x = x.reshape(B, F, J, -1)
x = self.pre_logits(x) # [B, F, J, dim_feat]
if return_rep:
return x
x = self.head(x)
return x
def get_representation(self, x):
return self.forward(x, return_rep=True)
|