Spaces:
Running
Running
File size: 13,586 Bytes
50ef0b7 a643bb2 9333076 50ef0b7 d5745cb 50ef0b7 5280b61 50ef0b7 5280b61 a643bb2 d5745cb a643bb2 5280b61 50ef0b7 a643bb2 50ef0b7 716ff7f daa1993 16fd361 daa1993 5280b61 11dcdf1 3c4a949 ff1979b 5280b61 50ef0b7 16fd361 6d220bd a643bb2 50ef0b7 d317594 50ef0b7 5280b61 d5745cb a643bb2 d5745cb 50ef0b7 a643bb2 50ef0b7 a643bb2 9453ab6 a643bb2 9453ab6 a643bb2 d5745cb a643bb2 e87b4c8 a643bb2 50ef0b7 5e73db7 50ef0b7 c606e76 5280b61 c606e76 5280b61 c606e76 5280b61 c606e76 5280b61 c606e76 5280b61 c606e76 5280b61 c606e76 5e73db7 c606e76 5280b61 194fd97 5280b61 54ecd01 194fd97 5280b61 194fd97 5280b61 194fd97 50ef0b7 5280b61 5e73db7 a643bb2 d5745cb a643bb2 50ef0b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import gradio as gr
import numpy as np
import random
import os
import torch
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, DDIMScheduler
from diffusers.utils import load_image
from peft import PeftModel, LoraConfig
from rembg import remove
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
width=512,
height=512,
model_id=model_id_default,
seed=42,
guidance_scale=7.0,
lora_scale=1.0,
num_inference_steps=20,
controlnet_checkbox=False,
controlnet_strength=0.0,
controlnet_mode="edge_detection",
controlnet_image=None,
ip_adapter_checkbox=False,
ip_adapter_scale=0.0,
ip_adapter_image=None,
tiny_vae=False,
ddim=False,
del_background=False,
alpha_matting=False,
alpha_matting_foreground_threshold=240,
alpha_matting_background_threshold=10,
alpha_matting_erode_size=10,
post_process_mask=False,
progress=gr.Progress(track_tqdm=True),
):
if model_id == model_id_default:
ckpt_dir='./model_output'
elif 'base' in model_id:
ckpt_dir='./model_output_distilled_base'
else:
ckpt_dir='./model_output_distilled_small'
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if model_id is None:
raise ValueError("Please specify the base model name or path")
generator = torch.Generator(device).manual_seed(seed)
params = {'prompt': prompt,
'negative_prompt': negative_prompt,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
'cross_attention_kwargs': {"scale": lora_scale}
}
if controlnet_checkbox:
if controlnet_mode == "depth_map":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-depth",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "pose_estimation":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "normal_map":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-normal",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "scribbles":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-scribble",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
else:
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
safety_checker=None).to(device)
params['image'] = controlnet_image
params['controlnet_conditioning_scale'] = float(controlnet_strength)
else:
pipe = StableDiffusionPipeline.from_pretrained(model_id,
torch_dtype=torch_dtype,
safety_checker=None).to(device)
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
# pipe.unet.add_weighted_adapter(['default'], [lora_scale], 'lora')
# pipe.text_encoder.add_weighted_adapter(['default'], [lora_scale], 'lora')
# pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
# pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
if tiny_vae:
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=torch_dtype)
if ddim:
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
if torch_dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
if ip_adapter_checkbox:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
pipe.set_ip_adapter_scale(ip_adapter_scale)
params['ip_adapter_image'] = ip_adapter_image
pipe.to(device)
if del_background:
return remove(pipe(**params).images[0],
alpha_matting=alpha_matting,
alpha_matting_foreground_threshold=alpha_matting_foreground_threshold,
alpha_matting_background_threshold=alpha_matting_background_threshold,
alpha_matting_erode_size=alpha_matting_erode_size,
post_process_mask=post_process_mask
)
else:
return pipe(**params).images[0]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
def controlnet_params(show_extra):
return gr.update(visible=show_extra)
with gr.Blocks(css=css, fill_height=True) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image demo")
with gr.Row():
model_id = gr.Dropdown(
label="Model ID",
choices=[model_id_default,
"nota-ai/bk-sdm-v2-base",
"nota-ai/bk-sdm-v2-small"],
value=model_id_default,
max_choices=1
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter your negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=30.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=20, # Replace with defaults that work for your model
)
with gr.Row():
tiny_vae = gr.Checkbox(
label="Use AutoencoderTiny?",
value=False
)
ddim = gr.Checkbox(
label="Use DDIMScheduler?",
value=False
)
with gr.Row():
del_background = gr.Checkbox(
label="Delete background?",
value=False
)
with gr.Column(visible=False) as rembg_params:
alpha_matting = gr.Checkbox(
label="alpha_matting",
value=False
)
with gr.Column(visible=False) as alpha_params:
alpha_matting_foreground_threshold = gr.Slider(
label="alpha_matting_foreground_threshold",
minimum=0,
maximum=255,
step=1,
value=240,
)
alpha_matting_background_threshold = gr.Slider(
label="alpha_matting_background_threshold",
minimum=0,
maximum=255,
step=1,
value=10,
)
alpha_matting_erode_size = gr.Slider(
label="alpha_matting_erode_size",
minimum=0,
maximum=100,
step=1,
value=10,
)
alpha_matting.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=alpha_matting,
outputs=alpha_params
)
post_process_mask = gr.Checkbox(
label="post_process_mask",
value=False
)
del_background.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=del_background,
outputs=rembg_params
)
with gr.Row():
controlnet_checkbox = gr.Checkbox(
label="ControlNet",
value=False
)
with gr.Column(visible=False) as controlnet_params:
controlnet_strength = gr.Slider(
label="ControlNet conditioning scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
)
controlnet_mode = gr.Dropdown(
label="ControlNet mode",
choices=["edge_detection",
"depth_map",
"pose_estimation",
"normal_map",
"scribbles"],
value="edge_detection",
max_choices=1
)
controlnet_image = gr.Image(
label="ControlNet condition image",
type="pil",
format="png"
)
controlnet_checkbox.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=controlnet_checkbox,
outputs=controlnet_params
)
with gr.Row():
ip_adapter_checkbox = gr.Checkbox(
label="IPAdapter",
value=False
)
with gr.Column(visible=False) as ip_adapter_params:
ip_adapter_scale = gr.Slider(
label="IPAdapter scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
)
ip_adapter_image = gr.Image(
label="IPAdapter condition image",
type="pil"
)
ip_adapter_checkbox.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=ip_adapter_checkbox,
outputs=ip_adapter_params
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
model_id,
seed,
guidance_scale,
lora_scale,
num_inference_steps,
controlnet_checkbox,
controlnet_strength,
controlnet_mode,
controlnet_image,
ip_adapter_checkbox,
ip_adapter_scale,
ip_adapter_image,
tiny_vae,
ddim,
del_background,
alpha_matting,
alpha_matting_foreground_threshold,
alpha_matting_background_threshold,
alpha_matting_erode_size,
post_process_mask,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch() |