Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import random
|
4 |
import os
|
5 |
import torch
|
6 |
-
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
|
7 |
from diffusers.utils import load_image
|
8 |
from peft import PeftModel, LoraConfig
|
9 |
from rembg import remove
|
@@ -39,10 +39,26 @@ def infer(
|
|
39 |
ip_adapter_checkbox=False,
|
40 |
ip_adapter_scale=0.0,
|
41 |
ip_adapter_image=None,
|
|
|
|
|
|
|
|
|
42 |
del_background=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
progress=gr.Progress(track_tqdm=True),
|
44 |
):
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
47 |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
48 |
|
@@ -106,6 +122,12 @@ def infer(
|
|
106 |
|
107 |
pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
|
108 |
pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
if torch_dtype in (torch.float16, torch.bfloat16):
|
111 |
pipe.unet.half()
|
@@ -119,7 +141,13 @@ def infer(
|
|
119 |
pipe.to(device)
|
120 |
|
121 |
if del_background:
|
122 |
-
return remove(pipe(**params).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
else:
|
124 |
return pipe(**params).images[0]
|
125 |
|
@@ -139,12 +167,15 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
139 |
gr.Markdown(" # Text-to-Image demo")
|
140 |
|
141 |
with gr.Row():
|
142 |
-
model_id = gr.
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
148 |
|
149 |
prompt = gr.Textbox(
|
150 |
label="Prompt",
|
@@ -190,11 +221,58 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
190 |
step=1,
|
191 |
value=20, # Replace with defaults that work for your model
|
192 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
with gr.Row():
|
194 |
del_background = gr.Checkbox(
|
195 |
label="Delete background?",
|
196 |
value=False
|
197 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
with gr.Row():
|
199 |
controlnet_checkbox = gr.Checkbox(
|
200 |
label="ControlNet",
|
@@ -294,7 +372,14 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
294 |
ip_adapter_checkbox,
|
295 |
ip_adapter_scale,
|
296 |
ip_adapter_image,
|
|
|
|
|
297 |
del_background,
|
|
|
|
|
|
|
|
|
|
|
298 |
],
|
299 |
outputs=[result],
|
300 |
)
|
|
|
3 |
import random
|
4 |
import os
|
5 |
import torch
|
6 |
+
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, DDIMScheduler
|
7 |
from diffusers.utils import load_image
|
8 |
from peft import PeftModel, LoraConfig
|
9 |
from rembg import remove
|
|
|
39 |
ip_adapter_checkbox=False,
|
40 |
ip_adapter_scale=0.0,
|
41 |
ip_adapter_image=None,
|
42 |
+
|
43 |
+
tiny_vae=False,
|
44 |
+
ddim=False,
|
45 |
+
|
46 |
del_background=False,
|
47 |
+
alpha_matting=False,
|
48 |
+
alpha_matting_foreground_threshold=240,
|
49 |
+
alpha_matting_background_threshold=10,
|
50 |
+
alpha_matting_erode_size=10,
|
51 |
+
post_process_mask=False,
|
52 |
+
|
53 |
progress=gr.Progress(track_tqdm=True),
|
54 |
):
|
55 |
+
if model_id == model_id_default:
|
56 |
+
ckpt_dir='./model_output'
|
57 |
+
elif 'base' in model_id:
|
58 |
+
ckpt_dir='./model_output_distilled_base'
|
59 |
+
else:
|
60 |
+
ckpt_dir='./model_output_distilled_small'
|
61 |
+
|
62 |
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
63 |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
64 |
|
|
|
122 |
|
123 |
pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
|
124 |
pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
|
125 |
+
|
126 |
+
if tiny_vae:
|
127 |
+
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=torch_dtype)
|
128 |
+
|
129 |
+
if ddim:
|
130 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
131 |
|
132 |
if torch_dtype in (torch.float16, torch.bfloat16):
|
133 |
pipe.unet.half()
|
|
|
141 |
pipe.to(device)
|
142 |
|
143 |
if del_background:
|
144 |
+
return remove(pipe(**params).images[0],
|
145 |
+
alpha_matting=alpha_matting,
|
146 |
+
alpha_matting_foreground_threshold=alpha_matting_foreground_threshold,
|
147 |
+
alpha_matting_background_threshold=alpha_matting_background_threshold,
|
148 |
+
alpha_matting_erode_size=alpha_matting_erode_size,
|
149 |
+
post_process_mask=post_process_mask
|
150 |
+
)
|
151 |
else:
|
152 |
return pipe(**params).images[0]
|
153 |
|
|
|
167 |
gr.Markdown(" # Text-to-Image demo")
|
168 |
|
169 |
with gr.Row():
|
170 |
+
model_id = gr.Dropdown(
|
171 |
+
label="Model ID",
|
172 |
+
choices=[model_id_default,
|
173 |
+
"nota-ai/bk-sdm-v2-base",
|
174 |
+
"nota-ai/bk-sdm-v2-small"],
|
175 |
+
value=model_id_default,
|
176 |
+
max_choices=1
|
177 |
+
)
|
178 |
+
|
179 |
|
180 |
prompt = gr.Textbox(
|
181 |
label="Prompt",
|
|
|
221 |
step=1,
|
222 |
value=20, # Replace with defaults that work for your model
|
223 |
)
|
224 |
+
with gr.Row():
|
225 |
+
tiny_vae = = gr.Checkbox(
|
226 |
+
label="Use AutoencoderTiny?",
|
227 |
+
value=False
|
228 |
+
)
|
229 |
+
ddim = = gr.Checkbox(
|
230 |
+
label="Use DDIMScheduler?",
|
231 |
+
value=False
|
232 |
+
)
|
233 |
+
|
234 |
with gr.Row():
|
235 |
del_background = gr.Checkbox(
|
236 |
label="Delete background?",
|
237 |
value=False
|
238 |
)
|
239 |
+
with gr.Column(visible=False) as rembg_params:
|
240 |
+
alpha_matting = gr.Checkbox(
|
241 |
+
label="alpha_matting",
|
242 |
+
value=False
|
243 |
+
)
|
244 |
+
with gr.Column(visible=False) as alpha_params:
|
245 |
+
alpha_matting_foreground_threshold = gr.Slider(
|
246 |
+
label="alpha_matting_foreground_threshold",
|
247 |
+
minimum=0,
|
248 |
+
maximum=255,
|
249 |
+
step=1,
|
250 |
+
value=240,
|
251 |
+
)
|
252 |
+
alpha_matting_background_threshold = gr.Slider(
|
253 |
+
label="alpha_matting_background_threshold",
|
254 |
+
minimum=0,
|
255 |
+
maximum=255,
|
256 |
+
step=1,
|
257 |
+
value=10,
|
258 |
+
)
|
259 |
+
alpha_matting_erode_size = gr.Slider(
|
260 |
+
label="alpha_matting_erode_size",
|
261 |
+
minimum=0,
|
262 |
+
maximum=100,
|
263 |
+
step=1,
|
264 |
+
value=10,
|
265 |
+
)
|
266 |
+
alpha_matting.change(
|
267 |
+
fn=lambda x: gr.Row.update(visible=x),
|
268 |
+
inputs=alpha_matting,
|
269 |
+
outputs=alpha_params
|
270 |
+
)
|
271 |
+
post_process_mask = gr.Checkbox(
|
272 |
+
label="post_process_mask",
|
273 |
+
value=False
|
274 |
+
)
|
275 |
+
|
276 |
with gr.Row():
|
277 |
controlnet_checkbox = gr.Checkbox(
|
278 |
label="ControlNet",
|
|
|
372 |
ip_adapter_checkbox,
|
373 |
ip_adapter_scale,
|
374 |
ip_adapter_image,
|
375 |
+
tiny_vae,
|
376 |
+
ddim,
|
377 |
del_background,
|
378 |
+
alpha_matting,
|
379 |
+
alpha_matting_foreground_threshold,
|
380 |
+
alpha_matting_background_threshold,
|
381 |
+
alpha_matting_erode_size,
|
382 |
+
post_process_mask,
|
383 |
],
|
384 |
outputs=[result],
|
385 |
)
|