File size: 14,463 Bytes
b32d25e
b441326
13a64ed
6f40086
b441326
 
 
b32d25e
 
13a64ed
b32d25e
 
 
 
 
 
 
 
79509b1
6f40086
b32d25e
 
 
 
 
 
 
 
ae129eb
b32d25e
 
 
 
79509b1
b32d25e
 
 
6f40086
a18b9c3
 
b32d25e
b441326
79509b1
b32d25e
a18b9c3
79509b1
b32d25e
b441326
b32d25e
6f40086
b32d25e
 
6f40086
b32d25e
 
 
 
6f40086
b32d25e
6f40086
 
 
 
b32d25e
 
 
 
b441326
b32d25e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f40086
b32d25e
6f40086
 
b32d25e
6f40086
 
 
 
 
 
 
b32d25e
b441326
 
6f40086
b441326
6f40086
b32d25e
6f40086
 
b32d25e
 
6f40086
b32d25e
6f40086
b32d25e
 
 
 
 
 
b441326
b32d25e
b441326
 
6f40086
b32d25e
 
 
6f40086
b32d25e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f40086
 
b32d25e
 
 
 
 
 
 
 
ae129eb
b32d25e
 
 
 
 
 
 
 
ae129eb
b32d25e
 
 
 
 
 
 
 
 
 
 
 
 
 
b441326
b32d25e
6f40086
b32d25e
6f40086
b32d25e
6f40086
 
 
b32d25e
 
79509b1
6f40086
a18b9c3
6f40086
 
 
 
 
 
 
b32d25e
6f40086
 
b32d25e
6f40086
a18b9c3
b32d25e
6f40086
b32d25e
 
 
 
 
 
 
6f40086
 
 
b32d25e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f40086
b32d25e
 
6f40086
b32d25e
 
a18b9c3
6f40086
 
b32d25e
b441326
 
 
a18b9c3
 
 
b32d25e
a18b9c3
6f40086
b32d25e
6f40086
 
 
b32d25e
 
 
6f40086
 
 
 
 
a18b9c3
b32d25e
 
 
 
 
 
 
 
 
79509b1
6f40086
a18b9c3
13a64ed
6f40086
b32d25e
6f40086
 
a18b9c3
79509b1
b32d25e
6f40086
 
 
 
 
 
b32d25e
 
6f40086
 
 
 
 
 
 
 
 
 
 
b32d25e
6f40086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32d25e
6f40086
 
 
b32d25e
6f40086
 
b32d25e
 
 
 
 
 
 
 
 
 
 
6f40086
 
b32d25e
 
 
 
 
 
6f40086
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# app.py β€” Corrected for proper LoRA adapter loading

import os
import gc
import torch
import gradio as gr
from typing import List, Tuple
import warnings
warnings.filterwarnings('ignore')

try:
    from peft import PeftConfig, PeftModel
    from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
    IMPORTS_OK = True
except ImportError as e:
    IMPORTS_OK = False
    print(f"Missing dependencies: {e}")
    print("Please install: pip install transformers peft torch gradio accelerate")

# ── Configuration ──────────────────────────────────────────────────────────────
HF_TOKEN = os.environ.get("HF_TOKEN")  # Optional for public models

# Your LoRA adapter location (HuggingFace repo or local path)
ADAPTER_ID = "Reubencf/gemma3-goan-finetuned"  
# For local adapter: ADAPTER_ID = "./path/to/your/adapter"

# Base model - MUST match what you used for fine-tuning!
# Check your adapter's config.json for "base_model_name_or_path"
BASE_MODEL_ID = "google/gemma-3-4b-it"  # Change this to your actual base model
# Common options:
# - "google/gemma-2b-it" (2B parameters, easier on memory)
# - "unsloth/gemma-2-2b-it-bnb-4bit" (quantized version)
# - Your actual base model used for training

# Settings
USE_8BIT = False  # Set to True if you have GPU and want to use 8-bit quantization
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

TITLE = "🌴 Gemma Goan Q&A Bot"
DESCRIPTION = """
Gemma base model + LoRA adapter fine-tuned on a Goan Q&A dataset.
Ask about Goa, Konkani culture, or general topics!

**Status**: {}
"""

# ── Load model + tokenizer (correct LoRA loading) ──────────────────────────────
def load_model_and_tokenizer():
    """Load base model and apply LoRA adapter correctly"""
    
    if not IMPORTS_OK:
        raise ImportError("Required packages not installed")
    
    print("[Init] Starting model load...")
    print(f"[Config] Base model: {BASE_MODEL_ID}")
    print(f"[Config] LoRA adapter: {ADAPTER_ID}")
    print(f"[Config] Device: {DEVICE}")
    
    # Memory cleanup
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    
    status = ""
    model = None
    tokenizer = None
    
    try:
        # Step 1: Try to read adapter config to get the correct base model
        actual_base_model = BASE_MODEL_ID
        try:
            print(f"[Load] Checking adapter configuration...")
            peft_config = PeftConfig.from_pretrained(ADAPTER_ID, token=HF_TOKEN)
            actual_base_model = peft_config.base_model_name_or_path
            print(f"[Load] Adapter expects base model: {actual_base_model}")
            
            # Warn if mismatch
            if actual_base_model != BASE_MODEL_ID:
                print(f"[Warning] BASE_MODEL_ID ({BASE_MODEL_ID}) doesn't match adapter's base ({actual_base_model})")
                print(f"[Load] Using adapter's base model: {actual_base_model}")
        except Exception as e:
            print(f"[Warning] Cannot read adapter config: {e}")
            print(f"[Load] Will try with configured base model: {BASE_MODEL_ID}")
            actual_base_model = BASE_MODEL_ID
        
        # Step 2: Load the BASE MODEL (not the adapter!)
        print(f"[Load] Loading base model: {actual_base_model}")
        
        # Quantization config for GPU
        quantization_config = None
        if USE_8BIT and torch.cuda.is_available():
            print("[Load] Using 8-bit quantization")
            quantization_config = BitsAndBytesConfig(
                load_in_8bit=True,
                bnb_8bit_compute_dtype=torch.float16
            )
        
        # Load base model
        base_model = AutoModelForCausalLM.from_pretrained(
            actual_base_model,
            token=HF_TOKEN,
            trust_remote_code=True,
            quantization_config=quantization_config,
            low_cpu_mem_usage=True,
            torch_dtype=torch.float32 if DEVICE == "cpu" else torch.float16,
            device_map="auto" if torch.cuda.is_available() else None,
        )
        
        # Move to device if needed
        if DEVICE == "cpu" and not torch.cuda.is_available():
            base_model = base_model.to("cpu")
            print("[Load] Model on CPU")
        
        print("[Load] Base model loaded successfully")
        
        # Step 3: Load tokenizer from the BASE MODEL
        print(f"[Load] Loading tokenizer from base model...")
        tokenizer = AutoTokenizer.from_pretrained(
            actual_base_model,
            token=HF_TOKEN,
            use_fast=True,
            trust_remote_code=True,
        )
        
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"
        
        # Step 4: Try to apply LoRA adapter
        try:
            print(f"[Load] Applying LoRA adapter: {ADAPTER_ID}")
            model = PeftModel.from_pretrained(
                base_model,
                ADAPTER_ID,
                token=HF_TOKEN,
                trust_remote_code=True,
                is_trainable=False,  # Inference only
            )
            
            # Optional: Merge adapter with base model for faster inference
            # This combines the weights permanently (uses more memory initially but faster inference)
            merge = input("\nπŸ’‘ Merge adapter for faster inference? (y/n, default=y): ").strip().lower()
            if merge != 'n':
                print("[Load] Merging adapter with base model...")
                model = model.merge_and_unload()
                print("[Load] Adapter merged successfully")
                status = f"βœ… Using fine-tuned model (merged): {ADAPTER_ID}"
            else:
                print("[Load] Using adapter without merging")
                status = f"βœ… Using fine-tuned model: {ADAPTER_ID}"
            
        except FileNotFoundError as e:
            print(f"[Error] Adapter files not found: {e}")
            print("[Fallback] Using base model without fine-tuning")
            model = base_model
            status = f"⚠️ Adapter not found. Using base model only: {actual_base_model}"
            
        except Exception as e:
            print(f"[Error] Failed to load adapter: {e}")
            print("[Fallback] Using base model without fine-tuning")
            model = base_model
            status = f"⚠️ Could not load adapter. Using base model only: {actual_base_model}"
        
        # Step 5: Final setup
        model.eval()
        print(f"[Load] Model ready on {DEVICE}!")
        
        # Memory cleanup
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        
        return model, tokenizer, status
        
    except Exception as e:
        error_msg = f"Failed to load model: {str(e)}"
        print(f"[Fatal] {error_msg}")
        
        # Try fallback to smallest model
        if "gemma-2b" not in BASE_MODEL_ID.lower():
            print("[Fallback] Trying with gemma-2b-it...")
            try:
                base_model = AutoModelForCausalLM.from_pretrained(
                    "google/gemma-3-4b-it",
                    token=HF_TOKEN,
                    trust_remote_code=True,
                    low_cpu_mem_usage=True,
                    torch_dtype=torch.float32,
                    device_map=None,
                ).to("cpu")
                
                tokenizer = AutoTokenizer.from_pretrained(
                    "google/gemma-3-4b-it",
                    token=HF_TOKEN,
                    trust_remote_code=True,
                )
                if tokenizer.pad_token is None:
                    tokenizer.pad_token = tokenizer.eos_token
                
                base_model.eval()
                return base_model, tokenizer, "⚠️ Using fallback model: gemma-2b-it (no fine-tuning)"
                
            except Exception as fallback_error:
                print(f"[Fatal] Fallback also failed: {fallback_error}")
                raise gr.Error(f"Cannot load any model. Check your configuration.")
        else:
            raise gr.Error(error_msg)

# Load model globally
try:
    model, tokenizer, STATUS_MSG = load_model_and_tokenizer()
    MODEL_LOADED = True
    DESCRIPTION = DESCRIPTION.format(STATUS_MSG)
except Exception as e:
    print(f"[Fatal] Could not load model: {e}")
    MODEL_LOADED = False
    model, tokenizer = None, None
    DESCRIPTION = DESCRIPTION.format(f"❌ Model failed to load: {str(e)[:100]}")

# ── Generation function ─────────────────────────────────────────────────────────
def generate_response(
    message: str,
    history: List[Tuple[str, str]],
    temperature: float = 0.7,
    max_new_tokens: int = 256,
    top_p: float = 0.95,
    repetition_penalty: float = 1.1,
) -> str:
    """Generate response using the model"""
    
    if not MODEL_LOADED:
        return "⚠️ Model failed to load. Please check the logs or restart the application."
    
    try:
        # Build conversation
        conversation = []
        if history:
            # Keep last 3 exchanges for context
            for user_msg, assistant_msg in history[-3:]:
                if user_msg:
                    conversation.append({"role": "user", "content": user_msg})
                if assistant_msg:
                    conversation.append({"role": "assistant", "content": assistant_msg})
        conversation.append({"role": "user", "content": message})
        
        # Apply chat template
        try:
            prompt = tokenizer.apply_chat_template(
                conversation,
                add_generation_prompt=True,
                return_tensors="pt"
            )
        except Exception as e:
            print(f"[Warning] Chat template failed: {e}, using fallback format")
            # Fallback format
            prompt_text = ""
            for msg in conversation:
                if msg["role"] == "user":
                    prompt_text += f"User: {msg['content']}\n"
                else:
                    prompt_text += f"Assistant: {msg['content']}\n"
            prompt_text += "Assistant: "
            
            inputs = tokenizer(
                prompt_text,
                return_tensors="pt",
                truncation=True,
                max_length=512
            )
            prompt = inputs.input_ids
        
        # Move to device
        prompt = prompt.to(model.device if hasattr(model, 'device') else DEVICE)
        
        # Generate
        print(f"[Generate] Input length: {prompt.shape[-1]} tokens")
        with torch.no_grad():
            outputs = model.generate(
                input_ids=prompt,
                max_new_tokens=min(int(max_new_tokens), 256),
                temperature=float(temperature),
                top_p=float(top_p),
                repetition_penalty=float(repetition_penalty),
                do_sample=True,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
                use_cache=True,
            )
        
        # Decode only generated tokens
        generated_tokens = outputs[0][prompt.shape[-1]:]
        response = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
        
        print(f"[Generate] Output length: {len(generated_tokens)} tokens")
        
        # Cleanup
        del outputs, prompt, generated_tokens
        gc.collect()
        
        return response
        
    except Exception as e:
        error_msg = f"⚠️ Error generating response: {str(e)}"
        print(f"[Error] {error_msg}")
        
        # Try to recover memory
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        
        return error_msg

# ── Gradio Interface ────────────────────────────────────────────────────────────
examples = [
    ["What is the capital of Goa?"],
    ["Tell me about Konkani language"],
    ["What are famous beaches in Goa?"],
    ["Describe Goan fish curry"],
    ["What is the history of Old Goa?"],
]

# Create interface
if MODEL_LOADED:
    demo = gr.ChatInterface(
        fn=generate_response,
        title=TITLE,
        description=DESCRIPTION,
        examples=examples,
        retry_btn=None,
        undo_btn=None,
        additional_inputs=[
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.7,
                step=0.05,
                label="Temperature (lower = more focused)"
            ),
            gr.Slider(
                minimum=32,
                maximum=256,
                value=128,
                step=16,
                label="Max new tokens"
            ),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p (nucleus sampling)"
            ),
            gr.Slider(
                minimum=1.0,
                maximum=2.0,
                value=1.1,
                step=0.05,
                label="Repetition penalty"
            ),
        ],
        theme=gr.themes.Soft(),
    )
else:
    demo = gr.Interface(
        fn=lambda x: "Model failed to load. Check console for errors.",
        inputs=gr.Textbox(label="Message"),
        outputs=gr.Textbox(label="Response"),
        title=TITLE,
        description=DESCRIPTION,
    )

# Queue with version compatibility
try:
    # Try newer Gradio syntax first (4.x)
    demo.queue(default_concurrency_limit=1, max_size=10)
except TypeError:
    try:
        # Fall back to older syntax (3.x)
        demo.queue(concurrency_count=1, max_size=10)
    except:
        # If both fail, try without parameters
        demo.queue()

if __name__ == "__main__":
    print("\n" + "="*50)
    print(f"πŸš€ Starting Gradio app on {DEVICE}...")
    print(f"πŸ“ Base model: {BASE_MODEL_ID}")
    print(f"πŸ”§ LoRA adapter: {ADAPTER_ID}")
    print("="*50 + "\n")
    
    demo.launch()