Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,95 @@
|
|
1 |
-
# app.py β
|
2 |
|
3 |
import os
|
4 |
import gc
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
from typing import List, Tuple
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# ββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
13 |
-
HF_TOKEN = os.environ.get("HF_TOKEN") #
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
USE_8BIT = False # Set to True if you have
|
18 |
-
|
19 |
-
DEVICE = "cpu" # Force CPU for free tier
|
20 |
|
21 |
TITLE = "π΄ Gemma Goan Q&A Bot"
|
22 |
DESCRIPTION = """
|
23 |
-
Gemma
|
24 |
Ask about Goa, Konkani culture, or general topics!
|
25 |
|
26 |
-
**
|
27 |
-
|
28 |
-
β οΈ **Note**: Running on free tier (CPU). Responses may be slower. For faster inference, consider upgrading to GPU tier.
|
29 |
"""
|
30 |
|
31 |
-
# ββ Load model + tokenizer (
|
32 |
def load_model_and_tokenizer():
|
33 |
-
"""Load model
|
34 |
|
35 |
-
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
print(f"[
|
41 |
|
42 |
-
# Memory cleanup
|
43 |
gc.collect()
|
44 |
if torch.cuda.is_available():
|
45 |
torch.cuda.empty_cache()
|
46 |
|
|
|
|
|
|
|
|
|
47 |
try:
|
48 |
-
#
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
# Quantization config
|
52 |
quantization_config = None
|
53 |
if USE_8BIT and torch.cuda.is_available():
|
|
|
54 |
quantization_config = BitsAndBytesConfig(
|
55 |
load_in_8bit=True,
|
56 |
bnb_8bit_compute_dtype=torch.float16
|
@@ -58,74 +97,125 @@ def load_model_and_tokenizer():
|
|
58 |
|
59 |
# Load base model
|
60 |
base_model = AutoModelForCausalLM.from_pretrained(
|
61 |
-
|
62 |
token=HF_TOKEN,
|
63 |
trust_remote_code=True,
|
64 |
quantization_config=quantization_config,
|
65 |
low_cpu_mem_usage=True,
|
66 |
torch_dtype=torch.float32 if DEVICE == "cpu" else torch.float16,
|
67 |
-
device_map=
|
68 |
-
max_memory={0: MAX_MEMORY} if torch.cuda.is_available() else None,
|
69 |
)
|
70 |
|
71 |
-
# Move to device
|
72 |
-
if DEVICE == "cpu":
|
73 |
base_model = base_model.to("cpu")
|
74 |
-
print("[Load] Model
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
81 |
token=HF_TOKEN,
|
|
|
82 |
trust_remote_code=True,
|
83 |
-
is_trainable=False, # Inference only
|
84 |
)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
except Exception as e:
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
)
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
# Load model globally
|
122 |
try:
|
123 |
-
model, tokenizer,
|
124 |
MODEL_LOADED = True
|
|
|
125 |
except Exception as e:
|
126 |
print(f"[Fatal] Could not load model: {e}")
|
127 |
MODEL_LOADED = False
|
128 |
-
model, tokenizer
|
|
|
129 |
|
130 |
# ββ Generation function βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
131 |
def generate_response(
|
@@ -136,81 +226,108 @@ def generate_response(
|
|
136 |
top_p: float = 0.95,
|
137 |
repetition_penalty: float = 1.1,
|
138 |
) -> str:
|
139 |
-
"""Generate response using the
|
140 |
|
141 |
if not MODEL_LOADED:
|
142 |
-
return "β οΈ Model failed to load.
|
143 |
|
144 |
try:
|
145 |
-
# Build conversation
|
146 |
conversation = []
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
152 |
conversation.append({"role": "user", "content": message})
|
153 |
|
154 |
# Apply chat template
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
# Move to
|
162 |
-
prompt = prompt.to(model.device)
|
163 |
|
164 |
-
# Generate
|
|
|
165 |
with torch.no_grad():
|
166 |
-
# Use cache for faster generation
|
167 |
outputs = model.generate(
|
168 |
input_ids=prompt,
|
169 |
-
max_new_tokens=min(int(max_new_tokens), 256),
|
170 |
temperature=float(temperature),
|
171 |
top_p=float(top_p),
|
172 |
repetition_penalty=float(repetition_penalty),
|
173 |
do_sample=True,
|
174 |
pad_token_id=tokenizer.pad_token_id,
|
175 |
eos_token_id=tokenizer.eos_token_id,
|
176 |
-
use_cache=True,
|
177 |
)
|
178 |
|
179 |
-
# Decode only
|
180 |
generated_tokens = outputs[0][prompt.shape[-1]:]
|
181 |
response = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
182 |
|
183 |
-
|
|
|
|
|
184 |
del outputs, prompt, generated_tokens
|
185 |
gc.collect()
|
186 |
|
187 |
return response
|
188 |
|
189 |
-
except torch.cuda.OutOfMemoryError:
|
190 |
-
gc.collect()
|
191 |
-
torch.cuda.empty_cache()
|
192 |
-
return "β οΈ Out of memory. Try reducing max_new_tokens or restarting the space."
|
193 |
except Exception as e:
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
# ββ Gradio Interface ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
197 |
examples = [
|
198 |
["What is the capital of Goa?"],
|
199 |
["Tell me about Konkani language"],
|
200 |
-
["What are
|
201 |
["Describe Goan fish curry"],
|
202 |
["What is the history of Old Goa?"],
|
203 |
]
|
204 |
|
205 |
-
# Create
|
206 |
if MODEL_LOADED:
|
207 |
demo = gr.ChatInterface(
|
208 |
fn=generate_response,
|
209 |
title=TITLE,
|
210 |
description=DESCRIPTION,
|
211 |
examples=examples,
|
212 |
-
retry_btn=None,
|
213 |
-
undo_btn=None,
|
214 |
additional_inputs=[
|
215 |
gr.Slider(
|
216 |
minimum=0.1,
|
@@ -222,7 +339,7 @@ if MODEL_LOADED:
|
|
222 |
gr.Slider(
|
223 |
minimum=32,
|
224 |
maximum=256,
|
225 |
-
value=128,
|
226 |
step=16,
|
227 |
label="Max new tokens"
|
228 |
),
|
@@ -244,21 +361,31 @@ if MODEL_LOADED:
|
|
244 |
theme=gr.themes.Soft(),
|
245 |
)
|
246 |
else:
|
247 |
-
# Fallback interface if model fails to load
|
248 |
demo = gr.Interface(
|
249 |
-
fn=lambda x: "
|
250 |
inputs=gr.Textbox(label="Message"),
|
251 |
outputs=gr.Textbox(label="Response"),
|
252 |
title=TITLE,
|
253 |
-
description=
|
254 |
)
|
255 |
|
256 |
-
# Queue
|
257 |
-
|
258 |
-
|
259 |
-
max_size=10
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
# Launch the app
|
263 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
demo.launch()
|
|
|
1 |
+
# app.py β Corrected for proper LoRA adapter loading
|
2 |
|
3 |
import os
|
4 |
import gc
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
from typing import List, Tuple
|
8 |
+
import warnings
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
|
11 |
+
try:
|
12 |
+
from peft import PeftConfig, PeftModel
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
14 |
+
IMPORTS_OK = True
|
15 |
+
except ImportError as e:
|
16 |
+
IMPORTS_OK = False
|
17 |
+
print(f"Missing dependencies: {e}")
|
18 |
+
print("Please install: pip install transformers peft torch gradio accelerate")
|
19 |
|
20 |
# ββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
21 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") # Optional for public models
|
22 |
+
|
23 |
+
# Your LoRA adapter location (HuggingFace repo or local path)
|
24 |
+
ADAPTER_ID = "Reubencf/gemma3-goan-finetuned"
|
25 |
+
# For local adapter: ADAPTER_ID = "./path/to/your/adapter"
|
26 |
+
|
27 |
+
# Base model - MUST match what you used for fine-tuning!
|
28 |
+
# Check your adapter's config.json for "base_model_name_or_path"
|
29 |
+
BASE_MODEL_ID = "google/gemma-2b-it" # Change this to your actual base model
|
30 |
+
# Common options:
|
31 |
+
# - "google/gemma-2b-it" (2B parameters, easier on memory)
|
32 |
+
# - "unsloth/gemma-2-2b-it-bnb-4bit" (quantized version)
|
33 |
+
# - Your actual base model used for training
|
34 |
|
35 |
+
# Settings
|
36 |
+
USE_8BIT = False # Set to True if you have GPU and want to use 8-bit quantization
|
37 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
38 |
|
39 |
TITLE = "π΄ Gemma Goan Q&A Bot"
|
40 |
DESCRIPTION = """
|
41 |
+
Gemma base model + LoRA adapter fine-tuned on a Goan Q&A dataset.
|
42 |
Ask about Goa, Konkani culture, or general topics!
|
43 |
|
44 |
+
**Status**: {}
|
|
|
|
|
45 |
"""
|
46 |
|
47 |
+
# ββ Load model + tokenizer (correct LoRA loading) ββββββββββββββββββββββββββββββ
|
48 |
def load_model_and_tokenizer():
|
49 |
+
"""Load base model and apply LoRA adapter correctly"""
|
50 |
|
51 |
+
if not IMPORTS_OK:
|
52 |
+
raise ImportError("Required packages not installed")
|
53 |
|
54 |
+
print("[Init] Starting model load...")
|
55 |
+
print(f"[Config] Base model: {BASE_MODEL_ID}")
|
56 |
+
print(f"[Config] LoRA adapter: {ADAPTER_ID}")
|
57 |
+
print(f"[Config] Device: {DEVICE}")
|
58 |
|
59 |
+
# Memory cleanup
|
60 |
gc.collect()
|
61 |
if torch.cuda.is_available():
|
62 |
torch.cuda.empty_cache()
|
63 |
|
64 |
+
status = ""
|
65 |
+
model = None
|
66 |
+
tokenizer = None
|
67 |
+
|
68 |
try:
|
69 |
+
# Step 1: Try to read adapter config to get the correct base model
|
70 |
+
actual_base_model = BASE_MODEL_ID
|
71 |
+
try:
|
72 |
+
print(f"[Load] Checking adapter configuration...")
|
73 |
+
peft_config = PeftConfig.from_pretrained(ADAPTER_ID, token=HF_TOKEN)
|
74 |
+
actual_base_model = peft_config.base_model_name_or_path
|
75 |
+
print(f"[Load] Adapter expects base model: {actual_base_model}")
|
76 |
+
|
77 |
+
# Warn if mismatch
|
78 |
+
if actual_base_model != BASE_MODEL_ID:
|
79 |
+
print(f"[Warning] BASE_MODEL_ID ({BASE_MODEL_ID}) doesn't match adapter's base ({actual_base_model})")
|
80 |
+
print(f"[Load] Using adapter's base model: {actual_base_model}")
|
81 |
+
except Exception as e:
|
82 |
+
print(f"[Warning] Cannot read adapter config: {e}")
|
83 |
+
print(f"[Load] Will try with configured base model: {BASE_MODEL_ID}")
|
84 |
+
actual_base_model = BASE_MODEL_ID
|
85 |
+
|
86 |
+
# Step 2: Load the BASE MODEL (not the adapter!)
|
87 |
+
print(f"[Load] Loading base model: {actual_base_model}")
|
88 |
|
89 |
+
# Quantization config for GPU
|
90 |
quantization_config = None
|
91 |
if USE_8BIT and torch.cuda.is_available():
|
92 |
+
print("[Load] Using 8-bit quantization")
|
93 |
quantization_config = BitsAndBytesConfig(
|
94 |
load_in_8bit=True,
|
95 |
bnb_8bit_compute_dtype=torch.float16
|
|
|
97 |
|
98 |
# Load base model
|
99 |
base_model = AutoModelForCausalLM.from_pretrained(
|
100 |
+
actual_base_model,
|
101 |
token=HF_TOKEN,
|
102 |
trust_remote_code=True,
|
103 |
quantization_config=quantization_config,
|
104 |
low_cpu_mem_usage=True,
|
105 |
torch_dtype=torch.float32 if DEVICE == "cpu" else torch.float16,
|
106 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
|
|
107 |
)
|
108 |
|
109 |
+
# Move to device if needed
|
110 |
+
if DEVICE == "cpu" and not torch.cuda.is_available():
|
111 |
base_model = base_model.to("cpu")
|
112 |
+
print("[Load] Model on CPU")
|
113 |
|
114 |
+
print("[Load] Base model loaded successfully")
|
115 |
+
|
116 |
+
# Step 3: Load tokenizer from the BASE MODEL
|
117 |
+
print(f"[Load] Loading tokenizer from base model...")
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
119 |
+
actual_base_model,
|
120 |
token=HF_TOKEN,
|
121 |
+
use_fast=True,
|
122 |
trust_remote_code=True,
|
|
|
123 |
)
|
124 |
|
125 |
+
if tokenizer.pad_token is None:
|
126 |
+
tokenizer.pad_token = tokenizer.eos_token
|
127 |
+
tokenizer.padding_side = "left"
|
128 |
|
129 |
+
# Step 4: Try to apply LoRA adapter
|
130 |
+
try:
|
131 |
+
print(f"[Load] Applying LoRA adapter: {ADAPTER_ID}")
|
132 |
+
model = PeftModel.from_pretrained(
|
133 |
+
base_model,
|
134 |
+
ADAPTER_ID,
|
135 |
+
token=HF_TOKEN,
|
136 |
+
trust_remote_code=True,
|
137 |
+
is_trainable=False, # Inference only
|
138 |
+
)
|
139 |
+
|
140 |
+
# Optional: Merge adapter with base model for faster inference
|
141 |
+
# This combines the weights permanently (uses more memory initially but faster inference)
|
142 |
+
merge = input("\nπ‘ Merge adapter for faster inference? (y/n, default=y): ").strip().lower()
|
143 |
+
if merge != 'n':
|
144 |
+
print("[Load] Merging adapter with base model...")
|
145 |
+
model = model.merge_and_unload()
|
146 |
+
print("[Load] Adapter merged successfully")
|
147 |
+
status = f"β
Using fine-tuned model (merged): {ADAPTER_ID}"
|
148 |
+
else:
|
149 |
+
print("[Load] Using adapter without merging")
|
150 |
+
status = f"β
Using fine-tuned model: {ADAPTER_ID}"
|
151 |
+
|
152 |
+
except FileNotFoundError as e:
|
153 |
+
print(f"[Error] Adapter files not found: {e}")
|
154 |
+
print("[Fallback] Using base model without fine-tuning")
|
155 |
+
model = base_model
|
156 |
+
status = f"β οΈ Adapter not found. Using base model only: {actual_base_model}"
|
157 |
+
|
158 |
+
except Exception as e:
|
159 |
+
print(f"[Error] Failed to load adapter: {e}")
|
160 |
+
print("[Fallback] Using base model without fine-tuning")
|
161 |
+
model = base_model
|
162 |
+
status = f"β οΈ Could not load adapter. Using base model only: {actual_base_model}"
|
163 |
+
|
164 |
+
# Step 5: Final setup
|
165 |
+
model.eval()
|
166 |
+
print(f"[Load] Model ready on {DEVICE}!")
|
167 |
+
|
168 |
+
# Memory cleanup
|
169 |
+
gc.collect()
|
170 |
+
if torch.cuda.is_available():
|
171 |
+
torch.cuda.empty_cache()
|
172 |
+
|
173 |
+
return model, tokenizer, status
|
174 |
|
175 |
except Exception as e:
|
176 |
+
error_msg = f"Failed to load model: {str(e)}"
|
177 |
+
print(f"[Fatal] {error_msg}")
|
178 |
+
|
179 |
+
# Try fallback to smallest model
|
180 |
+
if "gemma-2b" not in BASE_MODEL_ID.lower():
|
181 |
+
print("[Fallback] Trying with gemma-2b-it...")
|
182 |
+
try:
|
183 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
184 |
+
"google/gemma-2b-it",
|
185 |
+
token=HF_TOKEN,
|
186 |
+
trust_remote_code=True,
|
187 |
+
low_cpu_mem_usage=True,
|
188 |
+
torch_dtype=torch.float32,
|
189 |
+
device_map=None,
|
190 |
+
).to("cpu")
|
191 |
+
|
192 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
193 |
+
"google/gemma-2b-it",
|
194 |
+
token=HF_TOKEN,
|
195 |
+
trust_remote_code=True,
|
196 |
+
)
|
197 |
+
if tokenizer.pad_token is None:
|
198 |
+
tokenizer.pad_token = tokenizer.eos_token
|
199 |
+
|
200 |
+
base_model.eval()
|
201 |
+
return base_model, tokenizer, "β οΈ Using fallback model: gemma-2b-it (no fine-tuning)"
|
202 |
+
|
203 |
+
except Exception as fallback_error:
|
204 |
+
print(f"[Fatal] Fallback also failed: {fallback_error}")
|
205 |
+
raise gr.Error(f"Cannot load any model. Check your configuration.")
|
206 |
+
else:
|
207 |
+
raise gr.Error(error_msg)
|
208 |
|
209 |
+
# Load model globally
|
210 |
try:
|
211 |
+
model, tokenizer, STATUS_MSG = load_model_and_tokenizer()
|
212 |
MODEL_LOADED = True
|
213 |
+
DESCRIPTION = DESCRIPTION.format(STATUS_MSG)
|
214 |
except Exception as e:
|
215 |
print(f"[Fatal] Could not load model: {e}")
|
216 |
MODEL_LOADED = False
|
217 |
+
model, tokenizer = None, None
|
218 |
+
DESCRIPTION = DESCRIPTION.format(f"β Model failed to load: {str(e)[:100]}")
|
219 |
|
220 |
# ββ Generation function βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
221 |
def generate_response(
|
|
|
226 |
top_p: float = 0.95,
|
227 |
repetition_penalty: float = 1.1,
|
228 |
) -> str:
|
229 |
+
"""Generate response using the model"""
|
230 |
|
231 |
if not MODEL_LOADED:
|
232 |
+
return "β οΈ Model failed to load. Please check the logs or restart the application."
|
233 |
|
234 |
try:
|
235 |
+
# Build conversation
|
236 |
conversation = []
|
237 |
+
if history:
|
238 |
+
# Keep last 3 exchanges for context
|
239 |
+
for user_msg, assistant_msg in history[-3:]:
|
240 |
+
if user_msg:
|
241 |
+
conversation.append({"role": "user", "content": user_msg})
|
242 |
+
if assistant_msg:
|
243 |
+
conversation.append({"role": "assistant", "content": assistant_msg})
|
244 |
conversation.append({"role": "user", "content": message})
|
245 |
|
246 |
# Apply chat template
|
247 |
+
try:
|
248 |
+
prompt = tokenizer.apply_chat_template(
|
249 |
+
conversation,
|
250 |
+
add_generation_prompt=True,
|
251 |
+
return_tensors="pt"
|
252 |
+
)
|
253 |
+
except Exception as e:
|
254 |
+
print(f"[Warning] Chat template failed: {e}, using fallback format")
|
255 |
+
# Fallback format
|
256 |
+
prompt_text = ""
|
257 |
+
for msg in conversation:
|
258 |
+
if msg["role"] == "user":
|
259 |
+
prompt_text += f"User: {msg['content']}\n"
|
260 |
+
else:
|
261 |
+
prompt_text += f"Assistant: {msg['content']}\n"
|
262 |
+
prompt_text += "Assistant: "
|
263 |
+
|
264 |
+
inputs = tokenizer(
|
265 |
+
prompt_text,
|
266 |
+
return_tensors="pt",
|
267 |
+
truncation=True,
|
268 |
+
max_length=512
|
269 |
+
)
|
270 |
+
prompt = inputs.input_ids
|
271 |
|
272 |
+
# Move to device
|
273 |
+
prompt = prompt.to(model.device if hasattr(model, 'device') else DEVICE)
|
274 |
|
275 |
+
# Generate
|
276 |
+
print(f"[Generate] Input length: {prompt.shape[-1]} tokens")
|
277 |
with torch.no_grad():
|
|
|
278 |
outputs = model.generate(
|
279 |
input_ids=prompt,
|
280 |
+
max_new_tokens=min(int(max_new_tokens), 256),
|
281 |
temperature=float(temperature),
|
282 |
top_p=float(top_p),
|
283 |
repetition_penalty=float(repetition_penalty),
|
284 |
do_sample=True,
|
285 |
pad_token_id=tokenizer.pad_token_id,
|
286 |
eos_token_id=tokenizer.eos_token_id,
|
287 |
+
use_cache=True,
|
288 |
)
|
289 |
|
290 |
+
# Decode only generated tokens
|
291 |
generated_tokens = outputs[0][prompt.shape[-1]:]
|
292 |
response = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
293 |
|
294 |
+
print(f"[Generate] Output length: {len(generated_tokens)} tokens")
|
295 |
+
|
296 |
+
# Cleanup
|
297 |
del outputs, prompt, generated_tokens
|
298 |
gc.collect()
|
299 |
|
300 |
return response
|
301 |
|
|
|
|
|
|
|
|
|
302 |
except Exception as e:
|
303 |
+
error_msg = f"β οΈ Error generating response: {str(e)}"
|
304 |
+
print(f"[Error] {error_msg}")
|
305 |
+
|
306 |
+
# Try to recover memory
|
307 |
+
gc.collect()
|
308 |
+
if torch.cuda.is_available():
|
309 |
+
torch.cuda.empty_cache()
|
310 |
+
|
311 |
+
return error_msg
|
312 |
|
313 |
# ββ Gradio Interface ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
314 |
examples = [
|
315 |
["What is the capital of Goa?"],
|
316 |
["Tell me about Konkani language"],
|
317 |
+
["What are famous beaches in Goa?"],
|
318 |
["Describe Goan fish curry"],
|
319 |
["What is the history of Old Goa?"],
|
320 |
]
|
321 |
|
322 |
+
# Create interface
|
323 |
if MODEL_LOADED:
|
324 |
demo = gr.ChatInterface(
|
325 |
fn=generate_response,
|
326 |
title=TITLE,
|
327 |
description=DESCRIPTION,
|
328 |
examples=examples,
|
329 |
+
retry_btn=None,
|
330 |
+
undo_btn=None,
|
331 |
additional_inputs=[
|
332 |
gr.Slider(
|
333 |
minimum=0.1,
|
|
|
339 |
gr.Slider(
|
340 |
minimum=32,
|
341 |
maximum=256,
|
342 |
+
value=128,
|
343 |
step=16,
|
344 |
label="Max new tokens"
|
345 |
),
|
|
|
361 |
theme=gr.themes.Soft(),
|
362 |
)
|
363 |
else:
|
|
|
364 |
demo = gr.Interface(
|
365 |
+
fn=lambda x: "Model failed to load. Check console for errors.",
|
366 |
inputs=gr.Textbox(label="Message"),
|
367 |
outputs=gr.Textbox(label="Response"),
|
368 |
title=TITLE,
|
369 |
+
description=DESCRIPTION,
|
370 |
)
|
371 |
|
372 |
+
# Queue with version compatibility
|
373 |
+
try:
|
374 |
+
# Try newer Gradio syntax first (4.x)
|
375 |
+
demo.queue(default_concurrency_limit=1, max_size=10)
|
376 |
+
except TypeError:
|
377 |
+
try:
|
378 |
+
# Fall back to older syntax (3.x)
|
379 |
+
demo.queue(concurrency_count=1, max_size=10)
|
380 |
+
except:
|
381 |
+
# If both fail, try without parameters
|
382 |
+
demo.queue()
|
383 |
|
|
|
384 |
if __name__ == "__main__":
|
385 |
+
print("\n" + "="*50)
|
386 |
+
print(f"π Starting Gradio app on {DEVICE}...")
|
387 |
+
print(f"π Base model: {BASE_MODEL_ID}")
|
388 |
+
print(f"π§ LoRA adapter: {ADAPTER_ID}")
|
389 |
+
print("="*50 + "\n")
|
390 |
+
|
391 |
demo.launch()
|